



# WEAVER: INTERWEAVING SQL AND LLM FOR TABLE REASONING

EMNLP 2025

**Rohit Khoja\*, Devanshu Gupta\***  
**Yanjie Fu, Dan Roth, Vivek Gupta**

Arizona State University, University of Pennsylvania



# Why is Table QA still Challenging?

- Tables contain both **structured** (numbers, fields) and **unstructured** (long text/images) data
- SQL** is great for logic but fails at semantic inference
- LLMs** handle semantics but struggle at structured logic

**Example:** “Which country had the most competitors?”

| Driver          | Constructor      | Laps | Time    |
|-----------------|------------------|------|---------|
| Alain Prost     | Ferrari          | 64   | 1:18:31 |
| Thierry Boutsen | Williams-Renault | 64   | 39.092  |
| Ayrton Senna    | McLaren-Honda    | 63   | 1 Lap   |

SQL fails here → **LLM** helps with nationality inference

# Existing SQL-LLM integration is rigid or shallow

| Method             | Strength               | Limitation                    |
|--------------------|------------------------|-------------------------------|
| Binder/BlendSQL    | Integrate LLM into SQL | Fail on multi-step reasoning  |
| H-STAR / ReAcTable | Structured pruning     | Struggles with row extraction |
| ProTrix            | 2-step reasoning       | Limited flexibility           |

**Key Issue:** Fixed workflows lack adaptability to complex queries

# Weaver dynamically interweaves SQL and LLM reasoning

## LLM-generated dynamic execution plan:

Weaver first generates a **flexible step-by-step plan** that adapts to query complexity, then executes through dynamic interweaving of:

1. **SQL step** → Structured operations (filter, aggregate, join)
2. **LLM step** → Semantic reasoning (inference, understanding)
3. **Verification** → Ensures correctness

## Back-and-forth reasoning:

**SQL**  $\leftrightarrow$  **LLM**  $\leftrightarrow$  **SQL**  $\leftrightarrow$  **LLM**

# Phase 1: Preprocessing

## Prepare the data:

- Extract metadata and constraints
- Identify table schema and data types
- Filter irrelevant columns

**Table QA**  
1990 British Grand Prix

| Rank | Driver          | Constructor      | Laps | TimeRetired |
|------|-----------------|------------------|------|-------------|
| 1    | Alain Prost     | Ferrari          | 64   | 1:18:31     |
| 2    | Thierry Boutsen | Williams-Renault | 64   | 39.092      |
| 3    | Ayrton Senna    | McLaren-Honda    | 64   | 43.088      |
| 4    | Éric Bernard    | Lola-Lamborghini | 64   | 401:03:00   |

Question: which country had the most competitors? Gold Answer: Italy

**Pre-processed table**  1

Relevant Columns: {Driver}

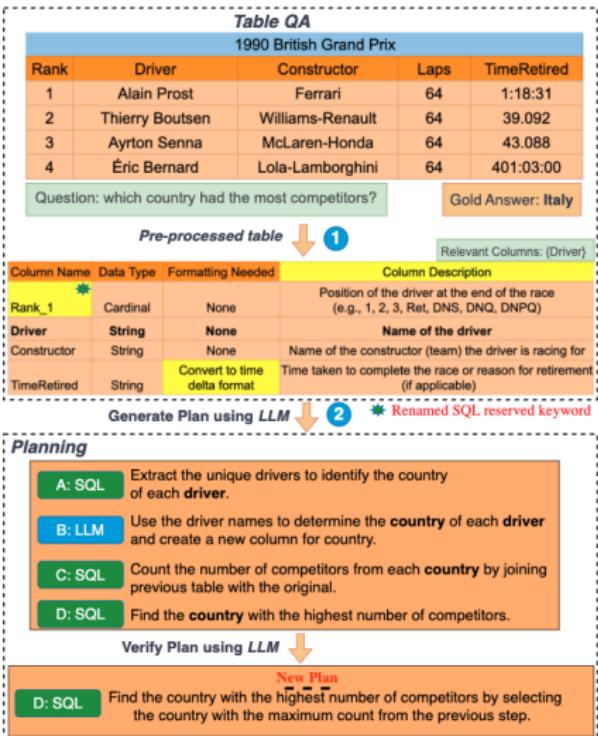
| Column Name | Data Type | Formatting Needed            | Column Description                                                                  |
|-------------|-----------|------------------------------|-------------------------------------------------------------------------------------|
| Rank_1      | Cardinal  | None                         | Position of the driver at the end of the race (e.g., 1, 2, 3, Ret, DNS, DNPQ, DNPQ) |
| Driver      | String    | None                         | Name of the driver                                                                  |
| Constructor | String    | None                         | Name of the constructor (team) the driver is racing for                             |
| TimeRetired | String    | Convert to time delta format | Time taken to complete the race or reason for retirement (if applicable)            |

 Renamed SQL reserved keyword

# Phase 2: Planning

LLM generates a dynamic execution plan:

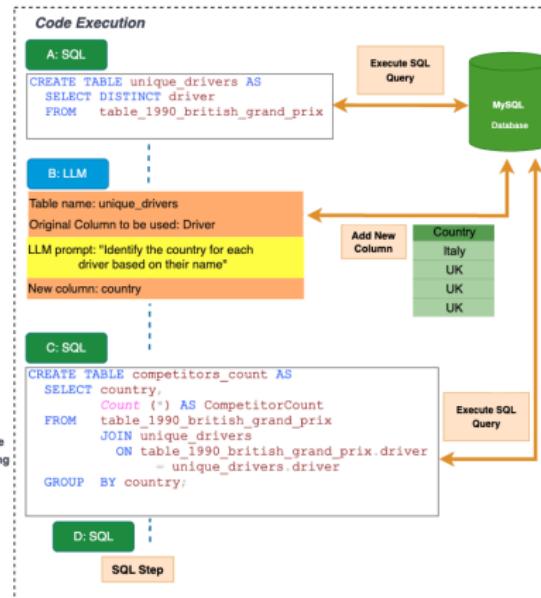
- Generate step-by-step execution plan
- Determine SQL vs. LLM operations for each step
- Adapt plan based on query complexity



# Phase 3: Code Execution

## Dynamic interweaving of SQL and LLM:

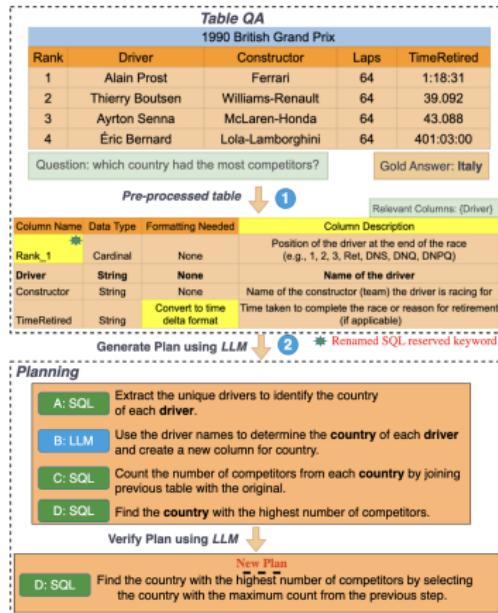
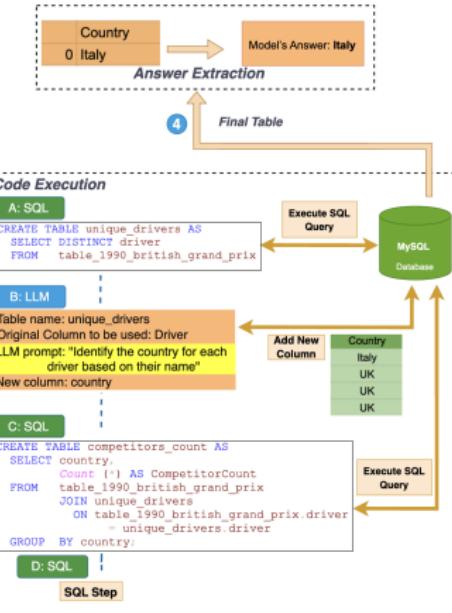
- Execute SQL queries on structured data
- Run LLM inference for semantic tasks



# Phase 4: Answer Extraction

## Generate final answer:

- Extract Answer from final table
- Format and validate the final answer



# Example Walkthrough:

**Question:** Which country had the most competitors?

1. **SQL step:** Extract unique drivers

```
SELECT DISTINCT driver COUNT(*) FROM table
```

2. **LLM step:** Infer country from driver column

"Alain Prost" → France, "Thierry Boutsen" → Belgium

3. **SQL step:** Count competitors by country

```
SELECT country, COUNT(*) as competitors  
FROM unique_drivers GROUP BY country
```

4. **Final Answer:** Italy

**Key Benefit:** Every step is transparent and interpretable

# Planning Optimization for Fewer API Calls

## Optimization strategies:

- SQL reordering
- Parallelization
- Batch processing

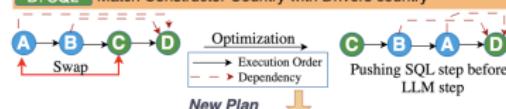
## Result:

23% reduction in total steps  
with 1% accuracy loss

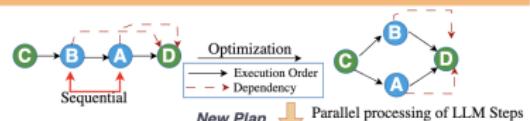
**Question:** Find all drivers who completed 64 laps and whose constructor and driver are from the same country

Generate Plan

A: LLM Use the constructor names to find out constructor country and create new column for country.  
B: LLM Use the Driver names to find out Driver country and create new column for country.  
C: SQL Query Drivers Who Completed 64 Laps  
D: SQL Match Constructor Country with Drivers country



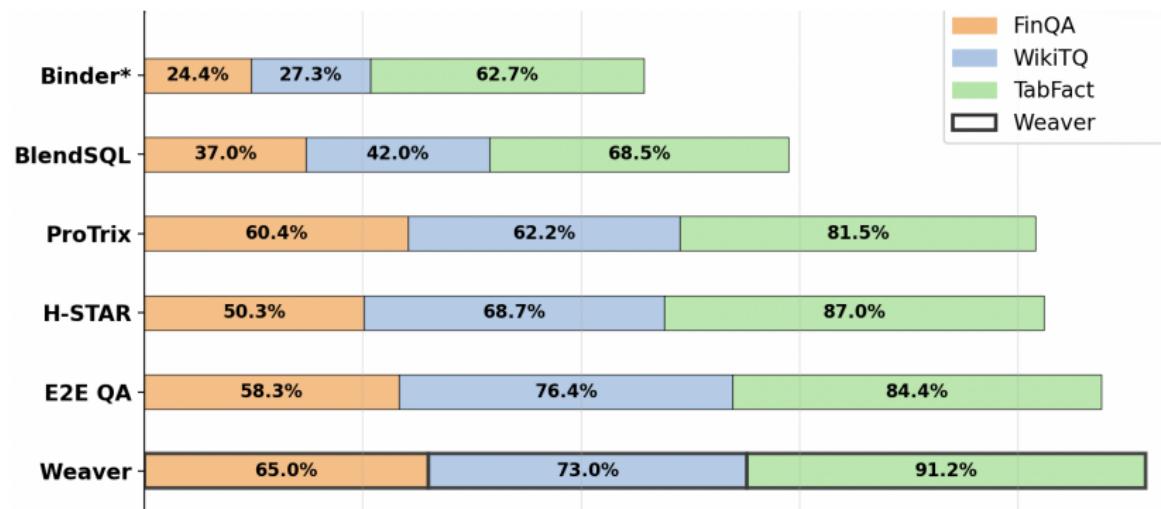
C: SQL Query Drivers Who Completed 64 Laps  
B: LLM Use the Driver names to find out Driver country and create new column for country.  
A: LLM Use the constructor names to find out constructor country and create new column for country.  
D: SQL Match Constructor Country with Drivers country



C: SQL Query Drivers Who Completed 64 Laps  
A: LLM Use the Constructor names to find out country and create near column for country.  
B: LLM Use the Driver names to find out country and create near column for country.  
D: SQL Match Constructor Country with Drivers country.

# Weaver Outperforms State-of-the-Art

Performance on major benchmarks:



Key achievements:

- +5% accuracy improvement across datasets

# Extends to Text + Image Tables

## Multimodal Table QA Performance:

| Dataset   | Modalities        | Accuracy Gain |
|-----------|-------------------|---------------|
| MMTabQA   | Text + Images     | +6.6%         |
| FinQA-MM  | Tables + Passages | +17.3%        |
| OTT-QA-MM | Tables + Passages | +2.9%         |

**Highlight:** Weaver handles reasoning across:

- Structured tables
- Unstructured text
- Embedded images

*Unified framework for multimodal table reasoning*

# Efficacy & Efficiency

## Efficiency:

- Average 6 API calls per query

| Method        | API Calls  |
|---------------|------------|
| Binder        | 50         |
| H-STAR        | 8          |
| <b>Weaver</b> | <b>5.5</b> |

## Efficacy:

- 28.1% accuracy improvement on large tables

| Method        | API Calls    |
|---------------|--------------|
| H-STAR        | 35.9%        |
| ProTrix       | 37.5%        |
| <b>Weaver</b> | <b>65.6%</b> |

## Interpretability:

- Transparent step-by-step plan
- Intermediate tables visible
- Easy debugging and verification

# Conclusion

**Dynamic SQL–LLM weaving enables accurate, interpretable, and efficient Table QA**

## Key Takeaways:

- **Modular, interpretable pipeline** for hybrid table reasoning
- **5–10% accuracy gain** over state-of-the-art methods
- **Multimodal support** (text, image, table)
- **Flexible planning** adapts to query complexity

## Link:

[coral-lab-asu.github.io/weaver](https://coral-lab-asu.github.io/weaver)

## Future Work

- Multi-table reasoning with joins across databases
- Multilingual table support (non-English tables)
- Hierarchical & nested data structures
- Integration with database systems