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When Charts Mislead,
Fail ?
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Real-world decisions rely on multiple
charts, not isolated visuals.

Misinterpreting distributed visuals can
lead to wrong conclusions, misleading
headlines, and policy errors.

Headlines often show contradictory or
incomplete visuals.

Small misalignments in axes, time ranges,
or metrics can produce misleading
narratives.
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Charts are Everywhere,
Understand Them?
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Multi-chart reasoning isn’t just vision; it’s structured analytical thinking.
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But Can AI Really
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Share of adults who are overweight or obese

"Overweignt” is dehned here as a body mass index {BMI} above 25 8MI s a person's welght In kilograms
divided by ther height In meters squared.
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Introducing INTERCHART

Task: Evaluate VLMs on distributed, multi-chart understanding.

Dataset: Three tiers: DECAF (simple), SPECTRA (relational), STORM (real-world multi-chart).

Benchmark: 12k oA pairs, multiple prompting strategies, LLM-as-Judge evaluation.
Question and Chart Complexity:

*Measures performance across increasing visual + reasoning difficulty:
e|ocal lookup —> relational comparison - multi-step temporal synthesis

e Tests abilities that current VLMs consistently fail:
*Trend alignment, multi-chart correlation, cross-entity tracking, time-based reasoning
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Dataset—-— DECAF congese B s% CORAL

DECAF - Decomposed Elementary Charts with Answerable Facts

What DECAF Evaluates
* Basic fact extraction
* Trend identification within a single chart
* Reading axes, labels, and numeric values

Data Composition

e 355 original charts - 1,188 decomposed charts

* Multiple chart types: line, bar, heatmap, dot, box plot

2,809 QA pairs from mixed generation methods (human, LLM,
SQL-LLM) Purpose

Q : What was the highest share of the population with access

to clean fuels for cooking in 87
A : The highest share in 2008 |s 98.34
DECAF provides a controlled baseline for evaluating fundamental visual
understanding before introducing relational or temporal complexity. - /
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Dataset—- SPECTRA

SPECTRA - Synthetic Plots for Event-based Correlated Trend Reasoning and
Analysis

What SPECTRA Evaluates

* I|dentifying correlated vs independent trends

* Comparing slopes, averages, and ranges

e Multi-step reasoning across two aligned charts

Data Composition
e 870 unique charts (paired into 333 context sets)

* 1,717 QA pairs, Includes correlated (1,481) and independent (245)
chart pairs

SPECTRA introduces relational complexity, measuring a model’s ability to

synthesize information across multiple visual sources.
6

SPECTRA
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Dataset—- STORM v o

STORM - Sequential Temporal reasoning Over Real-world Multi-domain
charts

What STORM Evaluates

* Matching events across different timelines
* Inferring numerical ranges and extrema |
* Linking economic, demographic, or health indicators across domains o o T -
* Multi-step reasoning across visually and semantically distinct charts

Data Composition
e Data Composition 324 original charts — 648 curated chart images
e 768 QA pairs across three reasoning types:

* Range Estimation (198)

e Abstract Numerical Reasoning (275) Q: In which year did the country with the highest peak debt
service as a share of exports reach its maximum value, while a
* Entity Inference (295) country in the olher chart recorded its Iowest ‘
A:
STORM represents the highest difficulty tier, mirroring real-world analytical tasks that \. A
require integrating distributed, heterogeneous visual information. ATNLP
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Stage 1: Dataset Generation
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LRCHART Architecture

| Stage 2: Reasoning & Prompting
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Stage 3: Answer Extraction
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Results:
Context

Interleaved Visual
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Results:
Contexft

Combined Visual
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Results:

Accuracy (%)

Chart To Table
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Results:

Accuracy (%)
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Results: STROM

STORM reasoning types (Abstract Numerical, Entity Inference, Range Estimation)
under Interleaved vs. Combined formats (Mean / Best).
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Comparison 1n Chart-Based

B cora

VQA

Dimension InfoChartQA ChartMind ChartQAPro INTERCHART
Chart Type Infographic Mixed Plots Plots
S
Multi-Chart No Limited No Yes
Real-World Data Yes Yes Yes Yes
Semantic Drift Medium Medium Low High
Temporal Reasoning Low Medium Low High
Visual Diversity High High Low High
QA Type Factoid Hybrid Factual Fact +
Inference
Evaluation Method BLEURT BLEU/LLM Exact Match LLM
Majority
Votlng
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J CORAL
Takeaways

1. INTERCHART exposes systematic failures in current VLMs, especially when reasoning must
integrate information across multiple heterogeneous charts.

2. Decomposing complex visuals into simpler units significantly boosts performance, highlighting that
models still rely on localized rather than global reasoning.

3. Accuracy drops sharply from synthetic (SPECTRA) to real-world multi-chart settings (STORM),
revealing poor generalization to semantic drift and temporal alignment.

4. Even top-tier VLMs plateau on STORM, emphasizing the need for new architectures that explicitly
model cross-chart reasoning, not just visual parsing.
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