

Transient Tables: Evaluating LLMs' Reasoning on Temporally Evolving Semi-structured Tables

Abhilash Shankarampeta*, Harsh Mahajan*, Tushar Kataria, Dan Roth, Vivek Gupta

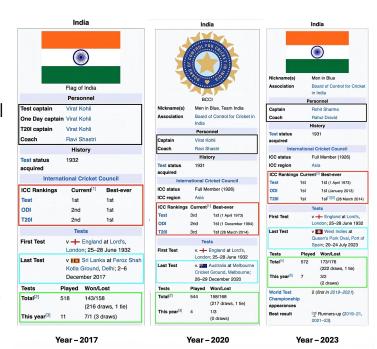
Affiliations: UC San Diego, University of Utah,

University of Pennsylvania, Arizona state university

* Equal Contribution

Motivation

- Information is inherently transient and constantly updated
 - Examples: company profits, political figures, sports rankings, etc.
- LLMs are typically trained on static datasets
- Research question: Can LLMs effectively reason over temporal changes in information through in-context learning?



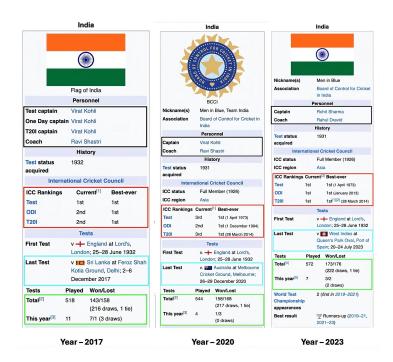
Sample question - How many Test matches did the Indian Cricket Team play between 2020 and 2023?

Why is it Challenging?

- Temporal Context Understanding
 - Models must ground questions in the right time period.
 - "Who was captain before Rohit Sharma?" requires identifying when Rohit became captain first
- Multi-Table Integration
 - Reasoning across 8-12 tables per entity timeline.
 - Tracking changes over time while maintaining consistency.

Why is it Challenging?

- Subtle Changes Detection
 - Key values change incrementally (e.g., Tests played: 518 → 544 → 572)
 - Easy to confuse values from different time periods.
- Token Length Limitations
 - Full entity timelines push context window limits.
 - Requires efficient attention to relevant information.

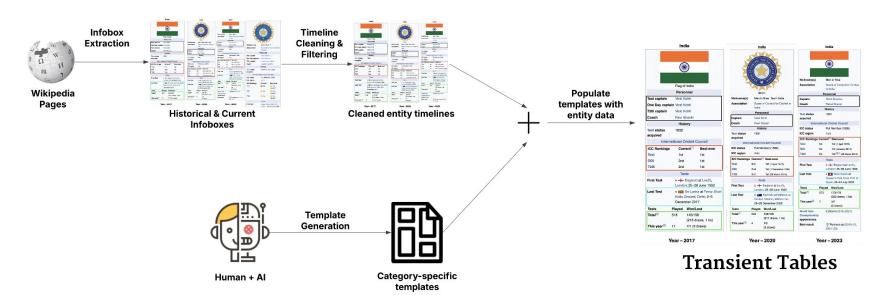


Key Contributions

- Transient Tables Dataset
 - A novel QA dataset with 3,971 questions from 14,000+ tables spanning
 1,238 entities with 11 tables per entity (on avg)
 - **Template-based question** generation pipeline using LLMs'
- Baseline results with state-of-the-art models
 - GPT-40, Llama3-70B, Gemini 1.5, GPT-40-mini, Llama3-8B, Mixtral
- Novel modeling strategies using task decomposition to enhance performance

Dataset Creation

- Entity timeline selection from Wikipedia infoboxes
- Timeline cleaning and filtering (8-12 tables per entity)
- Query-answer generation through templates



Question Categorization

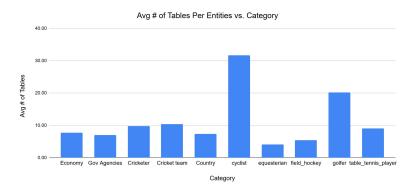
- Time information:
 - 2,985 implicit vs. 986 explicit questions

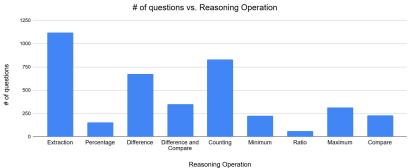
Example

- 'Who was the captain when India won the World Cup?' Implicit
- 'Who was the captain in 2020?' Explicit

Question Categorization

- Reasoning types:
 - extraction, counting, comparison, etc.
- Complexity:
 - 2,113 single key questions
 - 1,858 multiple key questions



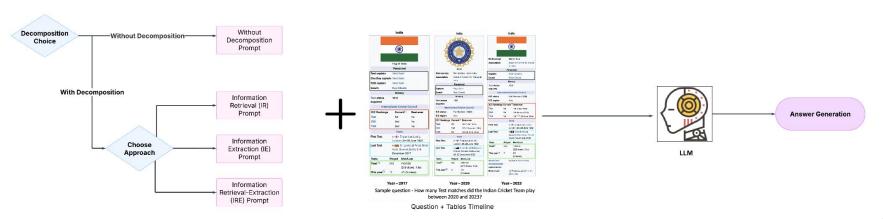


Modeling Techniques

- Information granularity variations:
 - Closed book
 - No context
 - Single table
 - Random or latest table only
 - Full timeline
 - All tables for the entity
 - Oracle timeline
 - Only the most relevant tables

Modeling Techniques

- Task decomposition approaches:
 - Without decomposition
 - Information retrieval
 - Information extraction
 - Information retrieval-extraction



Question: "Who was the coach of the Indian Cricket Team when Virat Kohli was captain and the team had its highest ICC Test ranking?"

Approach 1: Without Decomposition

Question: "Who was the coach of the Indian Cricket Team when Virat Kohli was captain and the team had its highest ICC Test ranking?"

Approach 1: Without Decomposition

Process full timeline of tables simultaneously

Question: "Who was the coach of the Indian Cricket Team when Virat Kohli was captain and the team had its highest ICC Test ranking?"

Approach 1: Without Decomposition

- Process full timeline of tables simultaneously
- Must identify Kohli's captaincy period, coaches during this time, and ICC rankings

Question: "Who was the coach of the Indian Cricket Team when Virat Kohli was captain and the team had its highest ICC Test ranking?"

Approach 1: Without Decomposition

- Process full timeline of tables simultaneously
- Must identify Kohli's captaincy period, coaches during this time, and ICC rankings
- Perform temporal correlation across multiple attributes

Question: "Who was the coach of the Indian Cricket Team when Virat Kohli was captain and the team had its highest ICC Test ranking?"

Approach 2: With Decomposition

Question: "Who was the coach of the Indian Cricket Team when Virat Kohli was captain and the team had its highest ICC Test ranking?"

Approach 2: With Decomposition

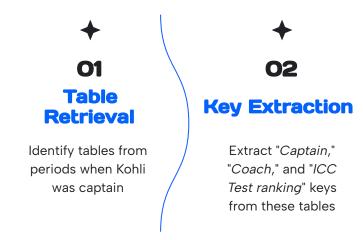
01

Table Retrieval

Identify tables from periods when Kohli was captain

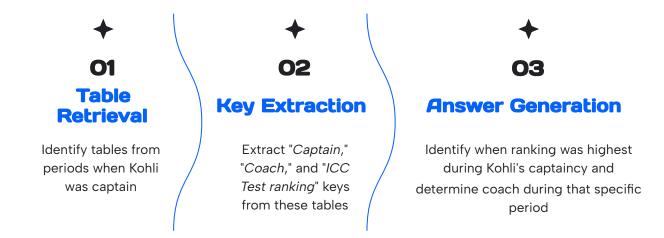
Question: "Who was the coach of the Indian Cricket Team when Virat Kohli was captain and the team had its highest ICC Test ranking?"

Approach 2: With Decomposition



Question: "Who was the coach of the Indian Cricket Team when Virat Kohli was captain and the team had its highest ICC Test ranking?"

Approach 2: With Decomposition



Task Decomposition : Levels

Information Retrieval (IR)

Stage 1: "Table Retrieval" (identify relevant tables from timeline)

Stage 2: "Answer Generation" (reason over retrieved tables)

Information (IE)

Stage 1: "Key Extraction" (extract relevant attributes from tables)

Stage 2: "Answer Generation" (reason over extracted keys)

Information Retrieval Extraction (IRE)

Stage 1: "Table Retrieval" (identify relevant tables)

Stage 2: "Key Extraction" (extract relevant attributes from retrieved tables)

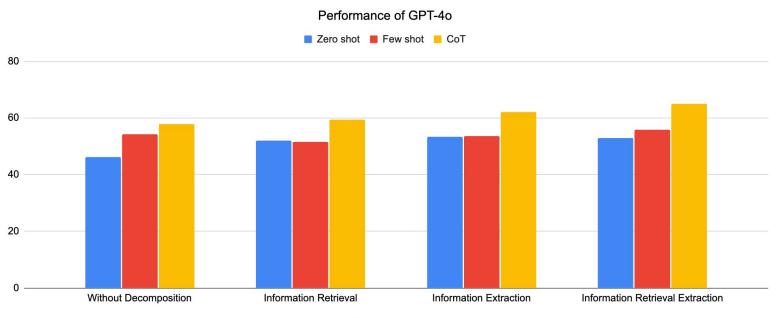
Stage 3: "Answer Generation" (reason over extracted keys)

Experimental Setup

- Models evaluated
 - GPT-40, Gemini-1.5-flash, GPT-40-mini (proprietary)
 - Llama3-70B, Llama3-8B, Mixtral-7x8B (open source)
- Prompting Techniques
 - Zero shot, Few Shot, Chain of Thought
- Evaluation metrics
 - F1, Exact Match (EM), Rouge-1, Rouge-L
- Human evaluation baseline for comparison

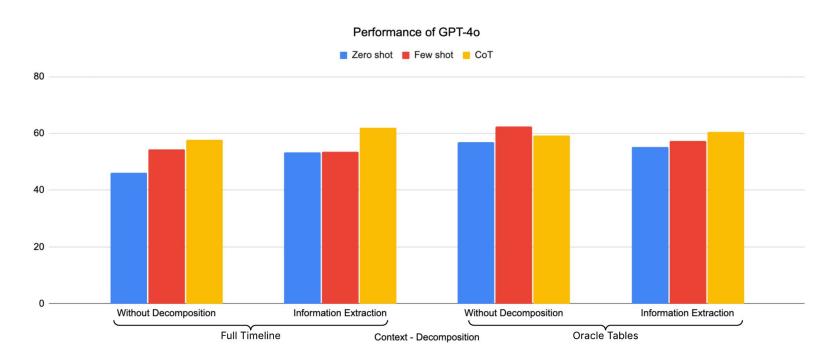
Results: Context Decomposition

Results: Context Decomposition



Context - Decomposition (Full Timeline)

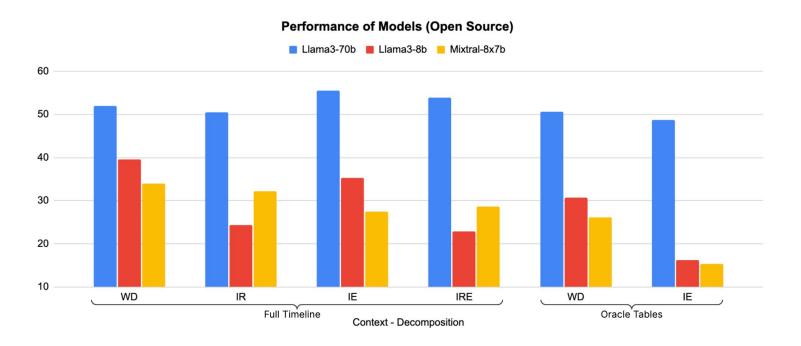
Results: Context Decomposition



Results: Close Source Models

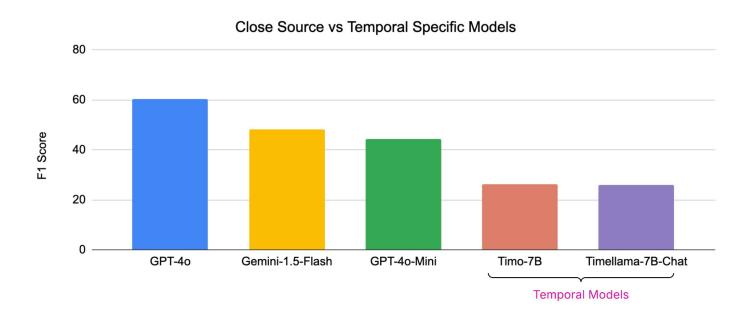
Results in different in-context variations and different intermediate task decompositions with various prompting methods.

Results: Open Source Models



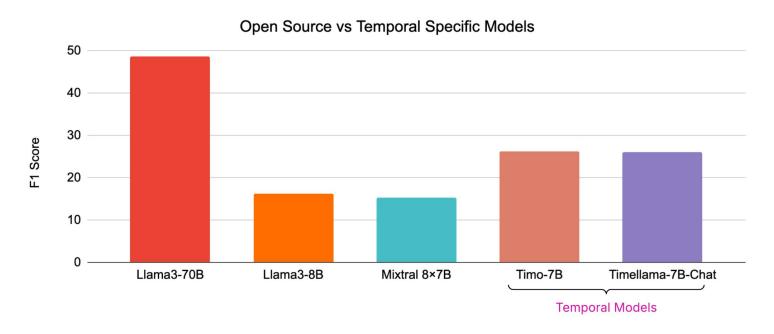
Results in different in-context variations and different intermediate task decompositions with various prompting methods.

Results: Temporal Models



CoT prompting with oracle tables and Key Extraction for task decomposition.

Results: Temporal Models



CoT prompting with oracle tables and Key Extraction for task decomposition.

Conclusion & Future Work

- A novel task of question answering on temporally evolving tables.
- A new **Transient Tables** dataset
 - 3,971 question-answer pairs.
 - From over 14k tables and 1,238 entities across various time periods.
- First study on LLM reasoning over entity-centric temporal tables.

In future:

- Currently its confined to Wikipedia infoboxes. Extending it to diverse structures beyond tables.
- Neuro-symbolic learning for better interpretability.

Thanks

*seeking Summer Internship opportunities — let's connect! ashankarampeta@ucsd.edu