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WHAT IS IT ABOUT?

VOG- B ANOMALIES IN TABLES

I. Context-Dependent Errors: Require deep contextual understanding and reasoning to be found.

II. Silent Data Corruptors: They poison data, leading to flawed decisions and financial loss.
III. More Than Outliers: Often subtle and complex, hiding beyond simple statistical checks.
IV. Rule Breakers: They defy traditional rule-based and statistical detection methods.

V. Trust Eroding: Undetected anomalies compromise trust in data across all industries.

“RARE but not always WRONG”
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WHY THIS MATTERS?

Detection Iin Tables

The Problems:

* Decisions at Risk: Undetected table anomalies corrupt data, leading to flawed decisions, financial losses, and compromised trust
across industries.

* Subtle & Complex Errors: Anomalies are often diverse, subtle, and require deep contextual understanding beyond simple
statistical outliers.

* Traditional Tools Fail: Rule-based and statistical methods are brittle, lack reasoning, and cannot adapt to the complex, semantic
nature of many table anomalies.

* No Human-like Reasoning: Current approaches cannot interpret context or apply common sense, which is crucial for identifying
sophisticated errors.

 Benchmark Gap: A lack of comprehensive benchmarks prevents effective evaluation of advanced, reasoning-based anomaly
detection techniques.
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Fannie Mae $1.2bn Restatement Enron Scandal and

Published by Myles Arnott
Mar 17, 2020 12:52:00 PM

Case Study 18: How Excel Errors and Risk Oversights
Cost JP Morgan $6 Billion

In the spring of 2012, JP Morgan Chase & Co.
faced one of the most significant financial deba-
cles in recent history, known as the "London
Whale" incident. The debacle resulted in losses
amounting to approximately $6 billion, funda-
rmentally shaking the confidence in the bank's
risk management practices.

At the core of this catastrophe was the failure of
the Synthetic Credit Portfolio Value at Risk (VaR)
Model, a sophisticated financial tool intended to
manage the risk associated with the bank's trading strategies.

Covid: how Excel may have caused loss
of 16,000 test results in England H appened ?
Alex Hern

UK technology editor

Public Health England data error blamed on limitations of
Microsoft spreadsheet

FCA fines HSBC Bank plc £63.9 million for deficient

transaction monitoring controls -

Press Releases ‘ First published: 17/12/2021 ‘ Last updated: 06/05/2022 ‘ See all updates Print Page

The FCA has fined HSBC Bank plc (HSBC) £63,946,800 for failings in its anti-money laundering processes.

Accounting Fraud: What

in X =
Share page




Anomalous Table

Data Consistency Anomaly
(Duplicate Primary Key) Temopral Anomaly
(Incorrect Time context)

Factual Anomaly
(Imaginary City)

Order 'D/ Dates (Order / Ship) /Transaction_Details (Item, Qty, Disc (%), Price ($), Total($))) Card Info \ Locale
1001 / 2025-05-12/2025-05-20 / ("Laptop", 2, "N/A", 1200, 2000) 4111 XXXX XXXX XXXX \JSA
1001 1600-01-01/1600-01-15 ("Time Machine", 5, 150, 1000, 5000 5500 0000 0000 0004 Atlantis
1002 2025-05-10/2025-05-20 ("Electric Scooter", -50, "N/A", 500, 0) 6011 XXXX XXXX XXXX Canada
1003 2025-04-20/202?-04-18 ("Snow Boots", /N/A", 80, 80) 3782 8224 6310 0050\ Singapore

Calculation Anomaly Security Anomaly

Value Anomaly (Incorrect Total) (Non Encrypted Card Details)

Logical Anomaly (Negative Value)

(Ship Date before Order Date)
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Categorization o G A

: Intefonls Incorrect computed values
Issues In table joins/relationships

The anomalies that are covered 1n this research are as follows:

Calculation-based Anomalies

Referential Anomalies

* Value Anomalies: Out-of-range or unexpected values. nconsts ™' & Missing of extra rows/columns
D , _ Factual Anomalies Structural Anomalies
* Logical Anomalies: Data violating logical rules (e.g., negative
salaries).

 Factual Anomalies: Inconsistencies with external facts.

* Temporal Anomalies: [rregularities in time-based data. Anomaira
e Calculation-based Anomalies: Incorrect computed values. s\Loglcal Anomalies

Violations of logical rules (.., negativ

* Security Anomalies: Admin access issues.

* Normalization Anomalies: Tables not satisfying 2NF,3NF, etc. Value Anomalies

forms. t-of-range or unexpected values
L ) Temporal Anomalies
Normalization Anomalies Irreqularities in time-based data
Security Anomalies
S ' A I Tables not satisfying 2NF, 3NF, etc
" Ira A.Fulton Schools of Admin access Issues
E.l Engineering
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Overlapping Cases

Table: Location Data

Location ID Latitude Longitude Description
1 37.7749 -122.4194 San Francisco
) ] /
2 -95.0000 200.0000 Invalid Location Ay ; i
L Logical Spidey
3 40.7128 -74.0060 New York City .
Anomaly W sl
Value Spi
e Location ID 2 has an invalid longitude (200.0000) since valid longitude values range from - Factual Sp|dey
-180 to 180. &8
Value [ ogteal Factual
Anomaly 5 Anomaly
Anomaly
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Modelling Approaches BRTICREY.

Just “Problem” Mentioned

(w/ and w/o CoT): There may be some problems present in the table, without mentioning

anomalies or examples.

Anomalies Mentioned

(w/ and w/o CoT): This prompt replaces "problems" with the explicit term "anomalies",

providing clearer task framing without examples.
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Modelling Approaches BREIT Ex 2

“X” Type of Anomaly Mentioned

(w/ and w/o CoT): Here, prompt specifies the exact anomaly type (e.g., "factual anomaly",

"value anomaly") while still omitting examples.

“X” Type of Anomaly Mentioned with Examples

(w/ and w/o CoT): these prompts enhance specificity further by including both the anomaly

type and an 1llustrative few-shot example
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Diagram

Stage 1: Dataset Generation Stage 2: Reasoning & Methods |, Stage 3: Anomaly Extraction '
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MUSEVE & SEVCOT

MUSEVE

* Self Consistent prompting with CoT to detect anomalies with different distinct reasoning chains.
* Self verifying the anomalies detected.
* Majority-voting based selection.

* Re-Reading
SEVCOT

* (CoT based anomaly detection at granular level.
* Self verifying the anomalies detected.

* Re-Reading
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m Neuro Symbolic Constraint Method

LLM + symbolic rules = efficient, interpretable anomaly detection.

Process:
I. From schema S and samples U, LLM generates constraint set:

V:{‘Plﬂﬁ’ia---ﬁﬂk}

II. Each @;is translated into executable code and run over table D.
III. A cell (7, j)is anomalous if

A={(r,j) [ dpi €V, ~pi(r)}
Example rule:
if order date > ship date = flag anomaly.
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i Recall — ChatGPT-40 (WikiTQ) % Recall — Gemini 2.0 Flash (WikiTQ)
w/o CoT w/o CoT
with CoT with CoT
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The figures highlights average Recall across various anomaly categories on the WikiTQ dataset, evaluated using four LLMs under different prompting strategies. Li denotes

the ith prompt level, with-w/ocot and-wcot indicating absence and presence of Chain-of-Thought reasoning, respectively. MUSEVE and SEVCOT represent multi-reasoning
and self-verification variants.
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WikiTQ F1 by Category — GPT-40 WIikiTQ F1 by Category — Gemini
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This figure highlights the averaged F1 scores achieved by ChatGPT-40 across eight anomaly categories in the WikiTQ
dataset. MUSEVE, SEVCOT, and NSCM represent multi reasoning, self-verification variants, and neuro-symbolic

constraint-based methods respectively.



Intrigued? Dive Deeper!

Scan for the Paper at
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Thanl Voiri |

If vour have anv auestions please feel free to contact me a2 mroychgl@asu.edu
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