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MAMMQA



Real-world information is multimodal; real data spans tables, text, charts, and images not just plain text.

Enables true cross-modal, multi-hop reasoning Many questions require combining evidence across 
formats; multimodal QA links and synthesizes these signals.

Improves accuracy, coverage & robustness Multiple modalities provide complementary evidence, reducing 
errors critical for finance, science, analytics, and audits.

Multi Modal QA—Matter?



Gap in Current Methods

Single Model: high cognitive Burden

Data leakage & memorized shortcuts

Dynamic agent methods are 
computationally heavy



MAMMQA 



MAMMQA    Phase 1 Modality Specific Agents 

• Modality Specific Agent, disentangles query 
specific to modality

• Three Experts: Text, Table, Image

• Less Cognitive load per expert, +Interpretability



MAMMQA    Phase 2 Cross Modal Agents 

• Cross Info Experts resolves 
ambiguity between 2 given 
modality

• Less Hallucination

• Trackable Reasoning 



MAMMQA    Phase 3 Information Aggregation



• MAMMQA +20–30 pp over CoT→ for small 
MLLMs like Qwen

• CapCoT: Plateau despite captions extracted 
from enterprise models like gemini. 

• ToT– fails to scale with huge computational 
load 

MAMMQA                                 Results on MultiModalQA 



MAMMQA                                Results on ManyModalQA 

• MAMMQA Outperforms almost all 
baselines

• CoT* shows Data Leakage



MAMMQA                                      Robustness Calibration

MAMMQA better handles Perturbation like Text Shuffle and Irreverent Context, depicting 
strong evidence based grounding

MAMMQA shows consistent performance boost when Aggregating information without query
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Try MAMMQA Yourself!

https://coral-lab-asu.github.io/MAMMQA/
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Thank You
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