

GETReason: Enhancing Image Context Extraction through Hierarchical Multi-Agent Reasoning

Shikhhar Siingh*¹, Abhinav Rawat*¹, Chitta Baral¹, Vivek Gupta¹

¹ Arizona State University *equal contribution

Publicly significant images are rich in context

Need to go beyond the surface level visual parts of the image to **reason** this information out of the image

Existing frameworks fail to extract this contextual information

Who are the people in this image?

Who are the people in this image?

Where could this image be from?

Where could this image be from?

Port-au-Prince, Haiti

Port-au-Prince, Haiti

Visit of Michelle Obama and Jill Biden to Haiti after the 2010 Haiti Earthquakes

Visit of Michelle Obama and Jill Biden to Haiti after the 2010 Haiti Earthquakes

Event

Visit of Michelle Obama and Jill Biden to Haiti after the 2010 Haiti Earthquakes

Event

Visit of Michelle Obama and Jill Biden to Haiti after the 2010 Haiti Earthquakes

Event

Given an image, extract:

- Location (Geospatial)
- Time (Temporal)
- **Event** (Socio Political significance)
- → Move beyond object recognition to real-world reasoning

Geospatial Event and Temporal Reasoning

Hierarchical Multi-Agent Framework

Structured Outputs

Prompt Engineering

Geospatial Event and Temporal Reasoning

Architecture

Scene Graph Generation

Prompt Generation

Multi Agentic Extraction

Geospatial Event and Temporal Reasoning

Scene Graph Generation

Scene graph Agent

```
{
    "idea": "",
    "reasoning": ""
}
```

Abstract Agent

Geospatial Event and Temporal Reasoning

Prompt Generation

Prompt Generator

```
"global_event_specialist": {
    "prompt": "",
    "reasoning": ""
},
    "spatial_specialist": {
        "prompt": "",
        "reasoning": ""
},
    "temporal_specialist": {
        "prompt": "",
        "reasoning": ""
}
}
```

Event Prompt

Temporal Prompt

Geospatial Prompt

Geospatial Event and Temporal Reasoning

Multi Agentic Extraction


```
"reasoning": ""
                   Event Agent
 "reasoning": ""
"century": "",
"day": "",
                   Temporal Agent
"month": "".
"vear": ""
 "city": "",
 "country": "",
                                   Geospatial Agent
 "state or province": ""
```


TARA: **11,241** images

WikiTiLo: 6,296 images

→ JSON-based structure: location, time, event & reasoning

Event

```
"event": {
    "value": "",
    "reasoning": ""
},
    "background": {
        "value": "",
        "reasoning": ""
}
```

Geospatial

```
{
    "city": "",
    "country": "",
    "state_or_province": ""
}
```

Temporal

```
{
    "century": "",
    "day": "",
    "decade": "",
    "month": "",
    "year": ""
}
```


Restructuring & Augmentation

TARA*

```
"id": ""
 "event": {
   "value": ""
   "reasoning": ""
"background": {
   "value": "",
   "reasoning": ""
"geospatial information": {
   "city": "",
   "country": "",
   "state_or_province": ""
 "temporal_information": {
   "century": "",
   "day": "",
   "decade": ""
   "month": ""
   "year": ""
```

Event

Augmentation

Spatio-Temporal

Augmentation

Deduction

Augmentation

WikiTiLo*

```
"id": "".
"temporal information": {
  "century": "",
  "decade": "".
  "year": "".
  "month": ""
  "day": ""
"geospatial_information": {
  "country": "",
  "state_or_province": "",
  "city": ""
```


GREAT (Geospatial Reasoning Event Accuracy with Temporal alignment)

Event: Semantic cosine similarity

Geospatial: Haversine distance + hierarchy

Temporal: Weighted unit-wise scoring

GREAT

(Geospatial Reasoning Event Accuracy with Temporal alignment)

Event Evaluation

Cosine Similarity of Sentence Embeddings (Event + Background)

$$\text{CS}_{\text{shifted}} = \frac{\text{CS} + 1}{2}$$

$$ES_i = \frac{CS((e_i + b_i), (E_i + B_i)) + 1}{2}$$

GREAT

(Geospatial Reasoning Event Accuracy with Temporal alignment)

Geo-spatial Evaluation

Haversine Distance-Based Similarity

$$d = 2R \arcsin\left(\sqrt{\sin^2\left(\frac{\Delta\phi}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2\left(\frac{\Delta\lambda}{2}\right)}\right)$$

$$S_{\text{geo}} = \max\left(0, 1 - \frac{d}{D_{\text{max}}}\right)$$

GREAT

(Geospatial Reasoning Event Accuracy with Temporal alignment)

Temporal Evaluation

Granularity-Weighted Temporal Accuracy

$$S_{u} = \begin{cases} 1, & \text{if } gt_{u} = pred_{u} \text{ (exact match, century level)} \\ \max\left(0, 1 - \frac{|gt_{u} - pred_{u}|}{T_{u}}\right), & \text{otherwise} \end{cases}$$

$$TS_i = \frac{\sum_u w_u S_u}{\sum_u w_u}$$

GETReason achieves highest scores in **Event**, **Geo**, **Temporal** inference

Superior performance on TARA and WikiTiLo datasets

Ablation confirms value of **cross-agent** iteration and **structured outputs**

Results Summary

Best performing model's performance:

Gemini 1.5 pro

(among the 3 tried models: Gemini 1.5 pro, GPT-4o-mini, Qwen 2.5-VL)

on the two used datasets.

Ablation

Error Analysis

Ablation: Impact of cross extraction and images in prompt and multiextraction layer

Relative error: Net improvement observed in GETReason for different tasks against baselines

Hierarchical multi-agent design improves contextual reasoning

Structured responses help in controlling the output of an LLM

GREAT metric evaluates reasoning, not just overlap