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Abstract

We study the capabilities of large language
models (LLMs) in detecting fine-grained
anomalies in tabular data. Specifically, we ex-
amine: (1) how well LLMs can identify di-
verse anomaly types including factual, logical,
temporal, and value-based errors; (2) the im-
pact of prompt design and prompting strate-
gies; and (3) the effect of table structure and
anomaly type on detection accuracy. To this
end, we introduce TABARD, a new benchmark
constructed by perturbing tables from WikiTQ,
FeTaQA, Spider, and BEAVER. The dataset
spans multiple domains and eight anomaly cat-
egories, including paired clean and corrupted
tables. We evaluate LLMs using direct, indirect,
and Chain-of-Thought (CoT) prompting. Our
results reveal notable limitations in standard
prompting, especially for complex reasoning
tasks and longer tables. To overcome these
issues, we propose a unified framework com-
bining multi-step prompting, self-verification,
and constraint-based rule execution. Our ap-
proach significantly improves precision and re-
call, offering a promising direction for robust
and interpretable anomaly detection in tables.

1 Introduction

Tables are a core data format across domains such
as finance, healthcare, scientific research, and gov-
ernment reporting. They have gained increasing at-
tention in machine learning (ML), natural language
processing (NLP), and broader AI research, sup-
porting tasks like question answering, table-to-text
generation, schema understanding, and data inte-
gration. However, real-world tables is often noisy,
incomplete, or inconsistent (Figure 2), issues that
can severely impact model performance as LLMs
and analytics systems rely on such data. Even sub-
tle anomalies can cascade into downstream errors,
affecting outputs and decisions. Tables are espe-
cially prone to a variety of anomalies, including
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incorrect values, logical inconsistencies, tempo-
ral misalignments, arithmetic errors, and security
flaws, all of which compromise data reliability.

As LLMs increasingly move to reasoning over
tabular data (e.g., TableQA, fact verification), their
reliability depends on the ability to detect subtle
inconsistencies. However, anomaly detection in
tables remains underexplored compared to text
and vision, with limited benchmarks, tools, and
systematic evaluation. Prior work has largely fo-
cused on unstructured or semi-structured data, with
minimal attention to relational tables (Li et al.,
2024). The absence of standardized benchmarks
has contributed to the limited exploration of tabular
anomaly detection, emphasizing the need for a sys-
tematic framework to evaluate model performance
across diverse anomaly types.

To bridge this gap, we introduce TABARD, a
comprehensive benchmark for evaluating anomaly
detection in tabular data. TABARD is constructed
by aggregating and perturbing tables from widely-
used sources such as WikiTQ (Pasupat and Liang,
2015), FeTaQA (Nan et al., 2021), Spider (Yu,
2018), and BEAVER (Chen et al., 2024). TABARD
features tables with systematically injected anoma-
lies, including value, factual, logical, temporal,
arithmetic, security, normalization, and consistency
violations, while preserving clean counterparts to
support supervised evaluation.

We evaluate large language models (LLMs)
using a four-tier prompting framework—ranging
from zero-shot to few-shot settings, with and with-
out chain-of-thought (CoT) reasoning. This com-
prehensive analysis exposes key limitations in the
models’ ability to detect and explain anomalies in
tabular data. To address these challenges, we pro-
pose three novel methods: (1) a multi-reasoning
self-verification strategy that uses CoT to iteratively
refine outputs; (2) a CoT-based approach enhanced
with recursive attention prompting to improve con-
textual coherence and consistency; and (3) a neuro-



Figure 1: A comprehensive table containing instances of all anomaly types. Each arrow highlights an anomalous
cell, annotated with the anomaly category and a brief explanation of its cause.

symbolic, constraint-driven technique that trans-
lates structured constraints into executable Python
code, enabling robust factual validation through
external knowledge integration. Our main contri-
butions are as follows:

• We define the novel task of fine-grained
anomaly detection in tabular data and propose
a taxonomy of eight anomaly types: value, fac-
tual, logical, temporal, calculation, security,
normalization, and consistency violations.

• We introduce TABARD, a human-verified
benchmark constructed via controlled pertur-
bations using large language models to simu-
late diverse anomaly types.

• We conduct a systematic evaluation of LLMs
under various prompting strategies—zero-
shot, few-shot, and Chain-of-Thought
(CoT)—across different levels of prompt
specificity.

• We propose three novel detection meth-
ods: MUSEVE, SEVCOT, and NSCM, a
neuro-symbolic approach that converts LLM-
generated constraints into executable Python
code, improving anomaly coverage and detec-
tion accuracy.

The dataset, along with associated scripts, and
other information are available at https://
coral-lab-asu.github.io/tabard.

2 Table Anomaly Detection

Given a table T = {Ti,j} with m rows and n
columns, where each cell Ti,j can take values
from a mixed-type domain D (e.g., text, num-
ber, date), the goal is to learn a binary function
f(Ti,j) ∈ {0, 1} indicating whether the cell is

anomalous. For each cell Ti,j , the model predicts a
binary label yi,j ∈ {0, 1}, where:

yi,j =

{
1, if Ti,j is anomalous
0, otherwise

This can be framed as a binary classification
task over each cell Ti,j , where the model learns a
function:

f : Ti,j → {0, 1}
that maps each table cell to an anomaly label, op-

tionally leveraging full table context, row/column
metadata, and external knowledge. The objective
is to maximize the recall of the anomaly detection
function f by correctly identifying true anomalies
while minimizing false negatives.

3 Our TABARD Dataset

We introduce TABARD, a benchmark for anomaly
detection, analysis, and reasoning in tabular data,
specifically designed to evaluate the capabilities of
large language models (LLMs). TABARD is con-
structed by selecting and cleaning tables from four
widely-used datasets: WikiTQ (Pasupat and Liang,
2015), FeTaQA (Nan et al., 2021), Spider (Yu,
2018), and BEAVER (Chen et al., 2024). The
benchmark covers eight distinct types of anoma-
lies:
• Value Anomaly: Deviation from valid cell-level

values based on domain constraints.
• Factual Anomaly: Conflicts with established

real-world knowledge.
• Logical Anomaly: Violations of logical relation-

ships between columns in the same row.
• Temporal Anomaly: Inconsistencies or impos-

sibilities in temporal data or sequences.
• Calculation-Based Anomaly: Errors in values

derived from arithmetic computations.

https://coral-lab-asu.github.io/tabard
https://coral-lab-asu.github.io/tabard


Figure 2: Overview of the TABARD framework.

• Security Anomaly: Leakage or improper han-
dling of sensitive or restricted information.

• Normalization Anomaly: Structural issues that
violate database normalization principles.

• Data Consistency Anomaly: Irregularities in
formatting, structure, or representation across
similar entries.

As illustrated in Figure 2, the benchmark includes
diverse examples: a duplicate Order ID in the sec-
ond row reflects a data consistency anomaly; the
year 1600 in the Date (Order/Ship) column is tem-
porally implausible; an Order Date occurring af-
ter the Ship Date indicates a logical anomaly. A
negative quantity in the Qty column represents a
value anomaly, while a miscalculated Total in the
first row exemplifies a calculation-based anomaly.
Exposure of unencrypted card details denotes a
security anomaly, and assigning "Atlantis" as the
Locale illustrates a factual anomaly.

TABARD Generation TABARD is constructed
by perturbing original tables from multiple sources
using large language models (LLMs) to introduce
diverse types of anomalies as defined earlier. We
use numeric and mixed-type tables from public
datasets such as WikiTQ, Spider, BEAVER, and
FeTaQA as our table sources. Tables are filtered
based on column-level metadata—such as data type
histograms, keyword matches, and composite-key
heuristics—to guide downstream anomaly gener-
ation. We retain only those tables that contain at
least a few numeric columns and have no missing
cells.

Each selected table, along with its original
schema, is passed to an LLM using specialized
prompts designed to induce different anomaly

types. We employ eight distinct perturbation
prompts, each corresponding to a specific anomaly
category. To generate ground truth labels, we track
all cells modified by the LLM and label them as
anomalous. Additionally, we store metadata includ-
ing the anomaly type (i.e., the prompt used) and the
LLM’s explanation for the perturbation, which aids
in subsequent data verification. Since TABARD
preserves the original schema of the tables, all SQL
and analytic queries valid on the clean version re-
main executable on its perturbed counterpart. This
ensures structural robustness, with anomalies that
survive downstream processes such as type casting
and serialization.

TABARD Verification. We perform human veri-
fication to assess the validity of anomalies gener-
ated by the LLM (GPT-4o). A random 15% subset
of the perturbed tables is sampled for manual re-
view.

Sample Cohen Kappa Jaccard Coef.

α1 94.48 92.67
α2 94.23 93.56

Table 1: Human validation of LLM-generated anomalies
based on agreement scores. Samples α1 and α2 corre-
spond to 7.5% random, disjoint subsets of the TABARD
dataset.

Two annotators evaluate the anomalies us-
ing both the perturbed table and its log (LLM-
generated reasoning for the pertubed data), deter-
mining whether the injected anomaly is contextu-
ally justified. We report human-LLM agreement as
shown in Table 1 scores as a measure of alignment
between model-generated anomalies and human



judgement. The high agreement scores indicate
that the anomalies produced by the LLM are accu-
rate and of high quality.

Dataset Statistics. The tables in TABARD are
categorized into two types based on their length.
Short tables are sourced from the WikiTQ and Fe-
TaQA datasets and long tables are drawn from the
Spider and BEAVER datasets which can be seen in
Table 2. In each table, an average of ⌈0.5 |rows|⌉

Statistic Wiki+FeTa Spi+BEA Combined

Total tables 4,840 455 5,295
Avg (17, 5) (349, 7) (33, 5)
Median (13, 6) (51, 7) (14, 6)
Std Dev (20, 1) (2011, 6) (443, 2)
Min (2, 3) (11, 2) (2, 2)
Max (479, 21) (30000, 37) (30000, 37)

Table 2: Dataset statistics for TABARD. For the
metrics Average, Median, Standard Deviation, Mini-
mum, and Maximum, values are reported in the format
(⌈rows⌉, ⌈columns⌉), representing the per-table statis-
tics for the number of rows and columns, respectively.

anomalies are injected (but varies a lot depending
upon the table), with at least one anomaly per table.
To evaluate robustness, a subset of tables is left
unperturbed to test LLM performance on clean in-
puts. Notably, the standard deviation of row counts
in long tables is significantly higher, reflecting a
much broader variance in structure and complexity.
This diversity enables robust evaluation of models
across all scales (small or large) table scenarios.

4 Modeling Approaches

We introduce three categories of methods as de-
scribed in Figure 2 (problem modeling approaches)
with increasing complexity. The first category con-
sists of Direct and Indirect prompts, each orga-
nized into four levels, with and without Chain-
of-Thought reasoning. Then we have a multi-
reasoning self-verification method that leverages
CoT, a self-verifying CoT method augmented with
recursive attention prompting technique, and a
neuro symbolic constraint based method.

4.1 Direct and Indirect Prompts
We design four levels of prompts for both direct and
indirect evaluation methods, where Levels 1 and
2 follow an indirect approach, while Levels 3 and
4 adopt a more direct evaluation strategy. As the
prompt level increases, more task-specific informa-
tion is provided, making the prompts progressively

more fine-tuned and targeted.

1. Just ‘Problem’ Mentioned - "L1",(w/ and
w/o CoT): There may be some problems
present in the table, without mentioning
anomalies or examples.

2. Anomalies Mentioned - "L2", (w/ and w/o
CoT): This prompt replaces "problems" with
the explicit term "anomalies", providing
clearer task framing without examples.

3. ‘X’ type of Anomaly Mentioned - "L3", (w/
and w/o CoT): Here prompt specifies the exact
anomaly type (e.g., "factual anomaly", "value
anomaly") while still omitting examples.

4. ‘X’ type of Anomaly with Example Men-
tioned - "L4", (w/ and w/o CoT): these
prompts enhance specificity further by includ-
ing both the anomaly type and an illustrative
few-shot example.

Note: From this point onward, we refer to these
prompting configurations using the shorthand ter-
minology: L1–L4 (with and without CoT). This
notation is consistently used in the results, figures,
and discussions throughout the paper.
Each level is tested both with and without
Chain-of-Thought (CoT) reasoning. In all con-
figurations, anomalies are flagged using the
(index,column_name) format. Then task is
framed as binary classification—determining
whether a given table cell contains an anomaly or
not and compare it with the ground truth data.

4.2 Multi-Reasoning & Self-Verify Prompts

We have developed two new tailor made prompting
techniques for this problem which includes many
commonly used prompting techniques which are
weaved in an intricate way to tackle this problem.
MUSEVE (Multi-Reasoning Self Verification) and
SEVCOT (Self Verification Chain of Thoughts) en-
hance anomaly detection performance. MUSEVE

first employs self-consistency prompting by gener-
ating multiple independent reasoning paths, each
using distinct logical frameworks to flag anomalous
cells. Each path applies chain-of-thought (CoT)
reasoning, performs self-verification, and outputs
anomalies (index,column_name) format. A major-
ity voting mechanism consolidates consistent flags,
followed by a re-reading phase for final CoT-based
refinement.



FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Prompt P R P R P R P R P R P R

ChatGPT-4o Gemini-1.5-Pro
w/o CoT

L1 38.5 55.7 43.8 43.3 50.1 52.6 29.2 56.9 45.3 46.5 31.0 58.6
L2 39.9 54.4 43.9 42.6 50.2 52.0 32.8 56.1 38.9 47.1 40.0 57.4
L3 44.2 54.5 44.0 39.5 50.0 51.4 38.3 54.5 37.4 47.4 45.4 55.1
L4 43.2 55.1 46.7 40.9 48.0 50.9 40.6 55.3 44.0 46.3 49.1 53.5

with CoT
L1 36.6 56.1 42.7 42.7 48.2 58.4 32.1 56.4 43.6 47.1 35.1 58.9
L2 40.0 56.5 44.5 42.5 49.9 55.7 35.3 56.6 41.7 47.3 42.2 54.8
L3 43.6 54.9 44.9 41.9 50.5 53.1 38.9 53.2 34.8 46.1 43.4 53.6
L4 44.1 56.6 46.4 43.1 52.3 55.2 37.1 56.0 41.4 46.7 41.5 54.2

MUSEVE 48.9 50.2 44.0 39.0 52.9 44.0 35.1 44.8 42.2 44.9 46.2 53.1
SEVCOT 42.8 51.0 46.8 39.9 56.9 52.5 28.5 55.4 39.5 47.0 41.9 56.1
NSCM 18.1 63.6 21.7 52.6 30.8 66.6 39.3 71.3 52.4 59.6 51.2 60.0

Table 3: This table highlights average Precision (P) and Recall (R) across various anomaly categories on the
FeTaQA, Spider+BEAVER, and WikiTQ datasets, evaluated using four LLMs under different prompting strategies.
Li denotes the ith prompt level, with -w/ocot and -wcot indicating absence and presence of Chain-of-Thought
reasoning, respectively. MUSEVE and SEVCOT represent multi-reasoning and self-verification variants.

SEVCOT follows a similar structure but omits
the self-consistency step. It performs a single CoT-
based reasoning pass, followed by self-verification
and a final re-reading stage. The key difference
lies in the absence of multiple independent rea-
soning paths in SEVCOT. In both methods, we
generate the Yes/No tables following the procedure
described in the previous section and compare them
with the ground truth Yes/No tables to compute the
evaluation metrics. For all Direct and Indirect meth-
ods, as well as MUSEVE and SEVCOT, we apply
dynamic chunking on long tables from the Spider
and BEAVER datasets, since the large number of
rows often causes the combined input and output
tokens to exceed the model’s context window.

4.3 Neuro-Symbolic Constraint Method

We propose NSCM a Neuro Symbolic Constraint
based method deterministic data validation pipeline
that leverages the generative capabilities of large
language models (LLMs) while maintaining strict
structural and logical control. A carefully engi-
neered prompt, enriched with schema and repre-
sentative values, is used to elicit a structured val-
idation dictionary per table. This dictionary con-
tains constraints across multiple categories such as
domain, logical, temporal, calculation-based, etc.
along with an external_knowledge_validation
list for factual verification.

We begin by providing the schema and up to
twenty unique cell values per column as input to
the LLM to generate constraints for the respective
columns. So, let the schema used be S and the
unique value set U = {U1, U2, . . . , Un}. Let.

V = {C1, C2, . . . , Ck} ∪ {E1, E2, . . . , Ej},

where Ci are the intrinsic constraints and Ej is
the set of external knowledge constraints. Both
constraint sets may be empty, i.e.,

{C1, C2, . . . , Ck} = ∅ or

{E1, E2, . . . , Ej} = ∅

depending on the table structure and prompt output.
Let e ∈ Ej denote a tuple extracted by the LLM

using its internal knowledge and web-based re-
trieval capabilities. Here, e is defined as:

e = (X ,K, y, ϕ, k),

denoting context columns X , knowledge columns
K, target column y, constraint function ϕ, and
knowledge specification k.

For each unique combination x ∈ Domain(X ),
we extract external knowledge kx → K(x), and
augment the original dataset D to obtain:

D′ = D ∪ {K(x)}.

Then, all constraints V are passed to a statement
generation agent, which maps each constraint ϕ ∈
V to a Python if statement:

ϕ : (r ∈ D′) 7→ bool.

Here, Φ is defined as a programmatic rule set:

Φ = {ϕ1, ϕ2, . . . , ϕm},



executable over the data.
Each rule ϕi ∈ Φ is embedded into a script P ,

which is executed over the augmented dataset D′

to yield the set of anomalies:

A = {(i, j) | ¬ϕk(ri), ri[j] violates ϕk}.

This unified execution framework handles both in-
trinsic and factual validations over the enriched
data. Final outputs are grouped by constraint cate-
gory and evaluated against ground truth labels G,
allowing computation of precision, recall, and rule
coverage. The pipeline can be summarized as:

(V,D, S, U)
LLM−−−→ Φ

P(D′)−−−−→ A.

Illustrative Example: Temporal Constraint on
Dates Column

We illustrate our constraint-based pipeline using
the Dates (Order / Ship) column from Figure 2.
The second row contains a temporal anomaly:
1600-01-01/1600-01-15, which lies far outside a
plausible e-commerce date range.

• Input Preparation: The table schema S and up
to 20 representative values per column U =
{U1, . . . , Un} are provided to the LLM.

• Constraint Generation: The LLM returns a
validation dictionary:

V = {C1, C2, . . . } ∪ {E1, E2, . . . },

where a temporal constraint Ci may state:
“Dates must lie in [2000, 2030] and order date
≤ ship date.”

• Code Synthesis: Each constraint ϕ ∈ V is
translated into an executable if statement,
forming a rule set Φ.

• Execution: The rules Φ are embedded in a
script P , run over the table D, and produce
anomalies:

A = {(1, "Dates")}.

• Evaluation: Predicted anomalies A are com-
pared to ground truth G to compute metrics
such as precision and recall.

This example highlights how our approach en-
ables LLM-generated constraints to be determin-
istically executed for anomaly detection, even in
temporally structured data.

5 Experimental Evaluation

Through our experiments, we aim to investigate
the following research questions: (a) How chal-
lenging is our benchmark dataset, TABARD, for
current state-of-the-art models? (b) To what extent
do various prompting strategies—such as few-shot
learning, Chain-of-Thought (CoT), and Self Verifi-
cation—improve anomaly detection performance?
(c) How do different language models perform on
the specific task of fine-grained anomaly detection
in tables?

Evaluation: Our primary task is binary predic-
tion, so we evaluate model performance using Pre-
cision (P) and Recall (R). F1 scores are also com-
puted and reported in the appendix for complete-
ness. All evaluations assume the current month and
year to be May 2025.

Models. We evaluate four advanced language
models: ChatGPT-4o, Gemini 1.5 Pro, LLaMA 3.1
70B Instruct, and DeepSeek-V3. Our constraint-
based neuro-symbolic method is executed on
ChatGPT-4o and Gemini 1.5 Pro. Due to limi-
tations in external tool access, we were unable to
deploy the constraint-based method on LLaMA and
DeepSeek.

5.1 Findings: Results & Analysis

TABARD poses a significant challenge: Anomaly
detection remains challenging across datasets, with
both precision and recall falling short of expecta-
tions.

Do LLMs consistently benefit from Chain-of-
Thought reasoning across prompt strategies?
Across all prompt levels (L1–L4), adding Chain-
of-Thought (CoT) reasoning consistently improves
recall for ChatGPT-4o and Gemini-1.5-Pro. For ex-
ample, on FeTaQA, ChatGPT-4o’s recall increases
from 55.7% (L1 w/o CoT) to 56.1% (L1 with
CoT), and from 55.1% to 56.6% at L4. Gem-
ini shows similar gains, with recall rising from
55.3% to 56.0% between L4 w/o CoT and with
CoT (Table 3). While precision occasionally dips
slightly with CoT (e.g., ChatGPT-4o L1 drops from
38.5% to 36.6%), the overall trend shows that CoT
enhances reasoning depth, particularly for recall-
sensitive tasks.

Do enhanced prompting techniques
(MUSEVE, SEVCOT, NSCM) outperform
standard CoT-based methods? Our enhanced
prompting strategies demonstrate diverse strengths,
as shown in Table 3. MUSEVE yields the



FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

ChatGPT-4o Gemini-1.5-Pro
MUSEVE

Calculation 41.4 41.6 46.3 30.3 76.0 63.0 33.6 35.6 60.5 50.5 90.0 90.0
Factual 40.9 37.9 43.7 37.0 42.0 30.0 25.8 28.3 35.1 41.9 32.0 36.0
Normalization 80.0 66.7 41.7 19.9 75.0 47.0 37.2 74.5 46.4 30.9 74.0 69.0
Logical 36.5 52.8 44.6 45.7 39.0 37.0 22.1 49.3 37.6 46.7 26.0 42.0
Temporal 51.5 51.3 25.4 31.1 40.0 42.0 51.1 57.3 21.9 41.2 29.0 56.0
Security 46.2 43.2 36.7 43.4 39.0 51.0 35.5 28.4 33.7 51.9 24.0 40.0
Consistency 42.5 29.2 50.8 33.6 48.0 29.0 28.9 16.8 43.3 29.0 39.0 32.0
Value 51.9 79.3 62.6 70.7 64.0 53.0 47.0 68.2 58.9 67.2 56.0 60.0

SEVCOT
Calculation 37.2 43.1 52.8 33.1 81.0 79.0 20.0 55.1 61.5 59.9 85.0 89.0
Factual 36.0 43.5 43.6 35.4 48.0 39.0 21.8 40.6 31.0 41.1 31.0 36.0
Normalization 69.7 69.3 45.9 20.4 79.0 58.0 36.2 72.5 40.8 31.4 61.0 76.0
Logical 29.2 56.5 49.4 47.7 38.0 43.0 17.0 54.5 31.5 47.7 24.0 47.0
Temporal 53.9 53.7 23.1 31.2 64.0 50.0 44.8 71.6 20.8 43.3 39.0 58.0
Security 38.2 36.2 39.7 45.6 32.0 42.0 28.4 39.5 35.7 56.9 18.0 39.0
Consistency 32.3 27.3 50.7 32.8 48.0 39.0 29.0 33.4 40.2 30.6 26.0 42.0
Value 46.2 78.4 65.2 72.7 65.0 70.0 31.2 76.0 54.7 64.9 51.0 62.0

NSCM
Calculation 10.3 57.9 6.5 22.9 35.3 67.3 30.0 70.6 55.1 72.4 75.6 85.6
Factual 10.0 51.5 21.5 29.6 12.3 46.1 20.7 36.9 38.4 30.5 31.1 20.3
Normalization 15.4 69.0 12.5 51.5 36.7 64.2 19.6 84.0 44.8 47.5 51.2 62.5
Logical 16.7 67.1 19.9 54.8 18.1 61.4 42.4 75.0 59.8 62.1 39.5 55.6
Temporal 9.4 33.0 21.4 50.8 9.9 49.0 74.6 94.6 25.1 46.7 18.2 21.6
Security 19.1 68.2 23.1 60.8 33.1 81.2 21.5 37.1 55.6 58.5 57.0 76.9
Consistency 23.4 54.8 33.2 50.3 26.7 53.4 36.2 42.3 58.4 51.5 32.8 29.7
Value 32.8 95.0 35.0 77.0 43.3 84.2 50.5 95.2 68.2 78.1 72.2 83.8

Table 4: This table summarizes the average precision (P) and Recall (R) achieved by ChatGPT-4o and Gemini-1.5-
Pro across eight anomaly categories in the FeTaQA, Spider+BEAVER, and WikiTQ datasets., evaluated using four
LLMs under different prompting strategies. Li denotes the ith prompt level, with -w/ocot and -wcot indicating
absence and presence of Chain-of-Thought reasoning, respectively. MUSEVE and SEVCOT represent multi-
reasoning and self-verification variants.

highest precision on FeTaQA for ChatGPT-4o
(48.9%), outperforming even the CoT-enhanced
L4. SEVCOT leads in precision on Spider+BEA
(46.8%) and WikiTQ (56.9%) for ChatGPT-4o.
Meanwhile, NSCM dominates recall across all
datasets and models. For instance, reaching 66.6%
recall on WikiTQ for ChatGPT-4o and 71.3% on
FeTaQA for Gemini. These results show that while
CoT improves baseline prompting, our targeted
strategies provide specialized improvements in
either precision (MUSEVE, SEVCOT) or recall
(NSCM).

Do certain prompting strategies work better
on specific datasets? Performance trends differ
across datasets. FeTaQA and WikiTQ, which con-
tain shorter and more regular tables, show consis-
tent gains from CoT and enhanced prompts. For
example, NSCM reaches 66.6% recall on WikiTQ
and 63.6% on FeTaQA with ChatGPT-4o, as shown
in Table 3. In contrast, Spider+BEA—comprising
longer and more heterogeneous tables—shows
smaller gains from CoT and larger improvements
from SEVCOT and NSCM. These results suggest

that structured prompting is effective for simpler
tables, while more complex tables require symbolic
or constraint-based reasoning to achieve reliable
performance.

Do prompting strategies generalize equally
well across models and datasets? As shown in
Table 3 Gemini-1.5-Pro consistently outperforms
ChatGPT-4o in recall on complex datasets and CoT-
enhanced prompts. For instance, under L4 with
CoT, Gemini achieves 56.0% recall on FeTaQA,
matching or exceeding ChatGPT-4o’s 56.6%. On
WikiTQ, Gemini under NSCM reaches 60.0% re-
call versus ChatGPT-4o’s 66.6%. While ChatGPT-
4o shows more substantial precision under MU-
SEVE and SEVCOT, Gemini excels in leverag-
ing deeper prompt levels for recall. Such results
demonstrate that multi-step reasoning is processed
differently across models, reinforcing the impor-
tance of architecture-aware prompt design.

Are LLMs equally effective across all
anomaly categories? We examine performance
trends across different anomaly types in Table 4.
Value anomalies consistently yield the highest re-



call for ChatGPT-4o and Gemini-1.5-Pro, regard-
less of the prompting strategy. Under NSCM,
ChatGPT-4o achieves a recall of 95.0% on Fe-
TaQA and 84.2% on WikiTQ, while Gemini-1.5-
Pro reaches 95.2% and 83.8%, respectively. These
high scores suggest that value-based outliers are
easier for models to identify, likely due to their
more distinguishable statistical or formatting irreg-
ularities.

Are certain categories systematically more dif-
ficult? Table 4 also reveals that Factual and Tempo-
ral anomalies remain consistently challenging, for
example, under MUSEVE, factual recall falls below
38% for ChatGPT-4o across all datasets, and under
SEVCOT, Gemini’s factual recall is limited to 36%
on WikiTQ and 41.1% on Spider+BEA. These cat-
egories likely require external world knowledge
or nuanced temporal interpretation, both known
limitations for current LLMs.

Which methods and datasets show the
strongest category-specific performance? As
shown in Table 4,NSCM stands out in recall
across many categories. For instance, on temporal
anomalies, Gemini reaches 94.6% recall on Fe-
TaQA under NSCM, while on logical anomalies
it scores 75.0%—substantially higher than with
MUSEVE or SEVCOT. Similarly, ChatGPT-4o
achieves 81.2% recall on security in WikiTQ with
NSCM, compared to 51.0% with MUSEVE or
42.0% with SEVCOT. These improvements show
that incorporating constraints into prompts signifi-
cantly improves the model’s ability to reason me-
thodically over structured inputs.

Do models behave differently depending on
the dataset characteristics? Model performance
varies significantly with the structural properties
of each dataset, as shown in Table 4. FeTaQA
and WikiTQ, which consist of shorter and more
uniformly structured tables, produce higher perfor-
mance in most categories of anomalies. In contrast,
Spider+BEA contains longer and more heteroge-
neous tables that challenge the models’ ability to
maintain contextual coherence. For example, in
the logical category under SEVCOT, ChatGPT-4o
achieves a recall of 56.5% on FeTaQA, but this
drops to 47.7% on Spider+BEA. This pattern holds
across categories and methods, highlighting the ad-
verse effect of table length and schema complexity
on anomaly detection accuracy.

Overall, the results from Table 3 and Table 4
reinforce the trends observed earlier: while CoT

and enhanced prompting help, dataset characteris-
tics such as table length and schema complexity
strongly influence performance. Our constraint-
based NSCM method demonstrates clear advan-
tages in handling false negatives and identifying
true Positives in these challenges, particularly when
standard prompting strategies fail.

6 Related Works

To the best of our knowledge, this work is the first
to investigate fine-grained, cell-level anomaly de-
tection in tabular data using LLMs, extending prior
anomaly detection efforts beyond unstructured and
coarse-grained settings.

In the visual domain, vision-language models
have improved anomaly detection in images and
videos (Cao et al., 2023; Gu et al., 2023; Zhu et al.,
2024; Yang et al., 2024). In multimodal settings,
these models have also been employed to detect
fake news by integrating textual and visual infor-
mation (Jin et al., 2024; Liu et al., 2024). In the
domain of log data, LLMs have been fine-tuned
to identify anomalies in system logs, effectively
handling both structured and unstructured formats
(Han et al., 2023; Yamanaka et al., 2024; Lee et al.,
2023; Hadadi et al., 2024).

Within tabular data, Li et al., 2024 demonstrated
the potential of LLMs as zero-shot batch-level
anomaly detectors and proposed synthetic data
generation and fine-tuning strategies to enhance
performance, achieving results on par with state-
of-the-art methods. ANOLLM (Tsai et al., 2025)
introduced a framework for unsupervised tabular
anomaly detection that operates directly on raw tex-
tual features and showed competitive performance
on several datasets.

Despite recent progress, fine-grained cell-level
anomaly detection in tables remains underexplored.
To address this, we introduce TABARD, a bench-
mark spanning eight anomaly types, and evaluate
LLMs across diverse prompting strategies. We
also propose three detection methods—including
two prompting-based and one constraint-based ap-
proach—that outperform baselines and improve
explainability in tabular anomaly detection.

7 Conclusion and Future Work

This work introduces TABARD, a comprehen-
sive benchmark and evaluation framework for
fine-grained anomaly detection in tabular data
using large language models (LLMs). By per-



turbing real-world tables with diverse anomaly
types and evaluating multiple prompting strate-
gies—including multi-reasoning, self-verification,
and a novel neuro-symbolic constraint-based
method—the study reveals fundamental strengths
and limitations of current LLMs. While traditional
prompting with CoT enhances recall, especially on
simpler datasets, our advanced methods like MU-
SEVE, SEVCOT, and NSCM achieve substantial
improvements in precision, recall, and explainabil-
ity across more complex settings. TABARD estab-
lishes a principled foundation for future research
on robust, interpretable, and scalable anomaly de-
tection systems in structured data.

We identify several promising directions for fu-
ture research. We aim to detect mixed and task-
driven anomalies, address incomplete or missing
table data, and extend anomaly detection to mul-
timodal tables with visual elements. Additionally,
we plan to strengthen our constraint-based frame-
work by incorporating feedback-guided refinement
and meta-level modeling for more reliable con-
straint generation. We provide a detailed discussion
of these directions in the Appendix Section-B.

Limitations

While our work makes significant strides in fine-
grained, cell-level anomaly detection in tabular
data using LLMs, it has certain limitations. First,
our benchmark and methods are restricted to
anomalies within individual tables. We do not
address multi-table settings, such as anomalies
arising from relationships across multiple tables,
inconsistencies between linked tables, or anoma-
lies requiring inter-table reasoning, which are com-
mon in many real-world tabular datasets. Further-
more, our work assumes access to full and com-
plete tables, whereas real-world tabular data of-
ten contains missing or incomplete entries, which
can significantly affect anomaly detection perfor-
mance. Additionally, our study primarily focuses
on prompting strategies without exploring fine-
tuning LLMs specifically for tabular anomaly de-
tection, which presents an opportunity for further
enhancing model performance.

Also, the higher false positive rate in our
constraint-based method primarily stems from the
conservative design of the constraint generation
phase. The LLM, given limited contextual informa-
tion (i.e., only the schema and up to 20 unique val-
ues), may over-generalize certain validation rules.

This can lead to constraints that are syntactically
or statistically reasonable, but overly strict when
applied to edge-case values in the full dataset. For
example, a domain constraint inferred from a par-
tial value distribution may reject rare-but-valid en-
tries, flagging them incorrectly as anomalous. Ad-
ditionally, logical or calculation-based constraints
derived from sparse patterns may fail to capture
all valid relational variants, further contributing
to false positives. To address this issue, we have
outlined two potential approaches for future work.

Ethics Statement

This research complies with the ethical guide-
lines of the Association for Computational Linguis-
tics (ACL) and EMNLP. Our benchmark dataset,
TABARD, is constructed by perturbing publicly
available, anonymized tabular datasets (WikiTQ,
FeTaQA, Spider, and BEAVER) intended for aca-
demic use. No personally identifiable information
(PII) or sensitive user data is included, ensuring no
direct privacy risks.

All anomalies were synthetically generated us-
ing controlled prompts to large language models
(LLMs), simulating realistic yet artificial data in-
consistencies across domains such as finance and
education. Sensitive-looking values (e.g., credit
card numbers) are entirely fabricated. TABARD
contains no human subject data, no private infor-
mation, and no harm-inducing content. It is built
exclusively from publicly available sources and is
designed to be harmless and ethically sound. A
subset of the data was verified by independent an-
notators to ensure contextual correctness; annota-
tors were compensated fairly and exposed to no
sensitive content. The authors have done human
annotation with detailed instruction given.

To mitigate risks associated with automation
and misuse, our methods are fully transparent and
reproducible. TABARD is released with a com-
prehensive datasheet specifying its use strictly for
research and benchmarking. We discourage its
use for training deployed systems without addi-
tional safeguards. Our neuro-symbolic method fur-
ther enhances interpretability by translating LLM-
generated constraints into executable rules.

Additionally, AI assistance—including language
models—was used to support parts of the paper
writing and research process (e.g., prompt devel-
opment and explanation formatting). All outputs
were carefully reviewed by human authors.



In conclusion, we prioritize data privacy, model
transparency, annotator welfare, and responsible
AI use in all aspects of this work.
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Appendix

A Data Generation and Preprocessing

We initiated our data generation process using
ChatGPT-4o with a temperature setting of 0.7 and
a maximum token limit of 1000. To ensure flexi-
bility across varying table lengths and structures,
we applied dynamic chunking to segment tables
contextually.

Our dataset construction is based on aggregat-
ing and perturbing tables from four established
benchmarks: WikiTQ (Pasupat and Liang, 2015),
FeTaQA (Nan et al., 2021), Spider (Yu, 2018), and
BEAVER (Chen et al., 2024). This aggregated re-
source, which we refer to as TABARD, introduces
diverse types of anomalies while retaining realistic
table semantics.

Perturbations were applied at the cell level to
simulate factual, logical, temporal, and consistency-
based errors. To enable precise anomaly localiza-
tion during evaluation, we inserted a marker to-
ken (‘@@@_‘) at the beginning of each modified
cell. This annotation allows systematic tracking of
anomalous content during both training and infer-
ence.

For each table, a binary yes/no table is gener-
ated using the (index, column_name) pairs pre-
dicted by the LLMs. This table mirrors the struc-
ture and schema of the original table, but each
cell is replaced with either "Yes" (indicating an
anomaly) or "No" (indicating normal data). During
the data generation phase, anomalies are introduced
by prepending a unique identifier token (@@@_) to
the corresponding cells. Using this information,
ground truth yes/no tables are constructed in the
same format. The predicted and ground truth tables
are then compared to compute evaluation metrics
including Precision, Recall, and F1 score. The
counts for true positives, false positives, and false
negatives are determined as follows:
if prediction[prediction_key] == "Yes" and

label[label_key] == "Yes":
true_positives += 1

elif prediction[prediction_key] == "Yes" and
label[label_key] == "No":
false_positives += 1

elif prediction[prediction_key] == "No" and
label[label_key] == "Yes":
false_negatives += 1

Overall, this pipeline supports the generation of
fine-grained anomaly instances aligned with real-
world scenarios over structured data.

Note: Anomalies are often misunderstood as

outright errors, but this is not always the case. An
anomaly refers to a data point that is rare, mislead-
ing, or inconsistent with the rest of the dataset—not
necessarily incorrect. Its interpretation can be sub-
jective and context-dependent. For instance, if most
dates in a column follow the MM/DD/YYYY format
but one entry uses DD/MM/YYYY, the value may still
be valid, yet inconsistent with the column’s format.
This illustrates a data consistency anomaly, where
the deviation disrupts structural uniformity rather
than factual correctness.

B Future Works

Our study opens several promising directions for
future research. One avenue is exploring mixed
anomalies, where a single cell may contain mul-
tiple anomaly types simultaneously (e.g., factual
and logical errors), as well as scenarios where mul-
tiple types of anomalies appear across different
cells within the same table. Another important
extension is handling incomplete tables with miss-
ing or empty cells. Future work could investigate
task-driven anomaly detection, where anomalies
are identified indirectly through the performance
of downstream tasks, such as answering questions
or summarizing. Detecting performance drops or
inconsistencies in such tasks when operating on
corrupted versus clean tables could offer practical,
interpretable signals of anomalies. We have also
planned to make some future advancements in our
NSCM to address some of our methods limitations
which includes:

a) Pre-Trained Meta Model: Use feedback
from prior executions to evaluate each constraint’s
precision and recall on held-out data, ranking them
by F1 to identify weak patterns. This information
can then guide a lightweight meta-model or prompt-
tuning setup that learns to prefer high-quality con-
straint patterns (e.g., robust range checks over brit-
tle list matches), allowing the LLM to progres-
sively refine its generation toward more reliable
and dataset-aligned rules.

b) Feedback-Guided Refinement: Use his-
torical execution feedback (e.g., common false-
positive patterns or constraint violation frequencies
across clean data) to iteratively fine-tune the con-
straint generation prompt. This enables the system
to learn which constraint types are too aggressive
and adapt generation accordingly.

Finally, extending anomaly detection to multi-
modal tables that include visual elements—such



as images embedded in cells presents an exciting
direction, requiring models to jointly reason over
both textual and visual information. Below is the
prompt for data generation for logical anomaly.
Due to space issues the data generation code for all
the anomalies can’t be included but the basic struc-
ture of all the data generation codes are similar.

Data Generation Prompt (Logical Anomaly)

First, thoroughly analyze the entire table.
Understand its structure, context, and rela-
tionships between columns and rows. Do
not skip this step.
Impart at least max_anomalies logical
anomalies based on the table’s structure and
contents. Use the examples below as guid-
ance.
Don’t add extra rows to the data only mod-
ify the existing ones. Return the modified
dataset in valid JSON format. [ "column1":
"value1", "column2": "value2", ..., "col-
umn1": "value1", "column2": "value2", ...
]
Logical Anomalies to Include:
1. Impossible Relationships:
- Delivery date earlier than the order date.
- Latitude/longitude outside valid ranges or
mismatched coordinates.
2. Illogical Contextual Data:
- Sydney experiencing -20°C in July or
Toronto experiencing 40°C in December.
3. Biological/Physical Impossibilities:
- Age greater than 204 years, speeds
exceeding the speed of light.
4. Violation of Scientific Principles:
- Mismatch between speed, time, and
distance.
5. Anachronisms:
- Plastic artifacts from 2000 BCE or
passports issued by defunct countries.
6. Financial Irregularities:
- Discounts greater than 1007. Referential
Anomalies:
- Nonexistent references in related tables.
8. Logical Violations in Calculations:
- Mismatched calculated values.
9. Illogical Temporal Data:
- Events out of sequence (e.g., birthdate
after death date).
10. Categorical Inconsistencies:

- Misclassified categories or attributes.
11. Other Logical Anomalies:
- Impart other types of logical anomalies
which you seem to be fit for that particular
table.

**Rules**
• Output **only** a JSON array – no
code-fence, no comments.
• Do **not** add or delete rows/columns.
• Do **not** include ‘//‘ comments inside
the JSON itself.
• Leave untouched cells exactly as they are.

C Prompts Used in Experiments

We present the prompt formulations used during
experimentation. We designed each prompt to
evaluate the performance of the model in various
anomaly detection settings.

C.1 Just ‘Problem’ Mentioned- L1 Prompts

L1-w CoT

Here is the JSON data: {json_string} which
might have some problems in its cells.
Analyze the data and identify anomalies
in the data. Follow a structured step-by-
step Chain-of-Thought (CoT) approach be-
fore returning the final output. Identify
and return them in the format [(index, col-
umn_name), (index, column_name)] where
index corresponds to the index in the list and
column_name is the name of the column
you think there is a problem. Just generate
the list format output so I can easily parse
it.

L1-w/o CoT

Here is the JSON data: {json_string}
which might have some problems. Iden-
tify and return them in the format
[(index, column_name), (index,
column_name)] where index corresponds
to the index in the list and column_name
is the name of the column you think there
is a problem. Just generate the list format
output so I can easily parse it.



C.2 Anomalies Mentioned- L2 Prompts

L2-w/o CoT

Here is the JSON data: {json_string}.
Can you identify the anomalous
cells and return them in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think there is
an anomaly in. Just generate the list format
output so I can easily parse it.

L2-w CoT

Here is the JSON data: {json_string}
Task:
Analyze the data and identify anomalies in
the data. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and read the table very
carefully to find anomalies in it.

Step 2: Generate the Anomalous Cells
- Identify the anomalous cells with anoma-
lies present in them.
- Return the output in the format
[(index, column_name), (index,
column_name)] where index corresponds
to the index in the list and column_name is
the name of the column you think there is
an anomaly. Just generate the list format
output so I can easily parse it.

C.3 ‘X’ type of Anomaly Mentioned- L3
Prompts

L3-w/o CoT

Here is the JSON data: {json_string}.
Can you identify the cells with {anomaly}
anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think there is
a {anomaly} anomaly. Just generate the list
format output so I can easily parse it.

L3-w CoT

Here is the JSON data: {json_string}
Task:
Analyze the data and identify {anomaly}
anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to {anomaly} anomalies.

Step 2: Generate the Anomalous Cells
- Identify the anomalous cells with
{anomaly} anomaly present in them.
- Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think contains
a {anomaly} anomaly. Just generate the list
format output so I can easily parse it.

C.4 ‘X’ type of Anomaly with Example
Mentioned - L4 Prompts

L4-w CoT (Data Consistency)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify data consis-
tency anomalies. Follow a structured step-
by-step Chain-of-Thought (CoT) approach
before returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to data consistency anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Below are examples of data con-
sistency anomalies:
1. Inconsistent Formats: A "phone
number" column where values use dif-
ferent formats (e.g., +1-234-567-8901,
(123) 456-7890, or unformatted like
1234567890).
2. Mismatched Categories: Different nam-
ing conventions used for the same cate-



gory (e.g., "HR", "Human Resources", and
"H.R.").
3. Cross-Table Inconsistencies: Salary
or payment values that differ between
related tables (e.g., expected_pay vs.
exact_pay).

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name
is the name of the column where a data
consistency anomaly is present. Just
generate the list format output so I can
easily parse it.

L4-w/o CoT (Data Consistency)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
data consistency anomalies and return them
in the format [(index, column_name),
(index, column_name)], where index
corresponds to the index in the list and
column_name is the name of the column
you think contains a data consistency
anomaly. Just generate the list format out-
put so I can easily parse it.
Here are a few examples of data consistency
anomalies to help you identify them:
1. Inconsistent Formats: A "phone
number" column where values use dif-
ferent formats (e.g., +1-234-567-8901,
(123) 456-7890, or unformatted like
1234567890).
2. Mismatched Categories: Different nam-
ing conventions used for the same cate-
gory (e.g., "HR", "Human Resources", and
"H.R.").
3. Cross-Table Inconsistencies: Salary
or payment values that differ between
related tables (e.g., expected_pay vs.
exact_pay).

L4-w CoT (Security)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify security

anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to security anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Below are examples of security
anomalies:
1. Suspended Role Conflict: A user
marked as "inactive" still holds a
"manager" role, posing a security risk if
the account is used maliciously.
2. Missing Audit Logs: Failed login
attempts with blank fields for "Browser
Version" or "User-Agent".
3. Suspicious Activity: A user logs in from
a different country every time, whereas they
normally log in from a single region or of-
fice location.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column where a security
anomaly is present. Just generate the list
format output so I can easily parse it.

L4-w/o CoT (Security)

Here is the JSON data: {json_string}. Ana-
lyze the data and identify the cells with se-
curity anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think contains
a security anomaly. Just generate the list
format output so I can easily parse it.
Here are a few examples of security anoma-
lies to help you identify them:
1. Suspended Role Conflict: A user
marked as "inactive" still holds a
"manager" role, posing a security risk if



the account is used maliciously.
2. Missing Audit Logs: Failed login
attempts with blank fields for "Browser
Version" or "User-Agent".
3. Suspicious Activity: A user logs in from
a different country every time, whereas they
normally log in from a single region or of-
fice location.

L4-w CoT (Value)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify value anoma-
lies. Follow a structured step-by-step Chain-
of-Thought (CoT) approach before return-
ing the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to value anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Below are examples of value
anomalies:

• Missing or Null Values:

– A critical column like "Product
ID" or "Customer Name" con-
taining empty or null values
where such information is re-
quired.

– A numeric field like "Price" or
"Quantity" left blank in a sales
record.

• Illogical Negative Values:

– A "Price" column with negative
values, which is not possible for
most products.

– A "Salary" field showing a neg-
ative amount for an employee.

• Extreme Outlier Values:

– A house listed with a price of
$1 or $1 billion in a neighbor-
hood where the typical range is
$300,000 to $500,000.

– A recorded temperature of 150°C
in a location where temperatures
do not exceed 50°C.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name
is the name of the column where a value
anomaly is present. Just generate the list
format output so I can easily parse it.

L4-w/o CoT (Value)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
value anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think contains a
value anomaly. Just generate the list format
output so I can easily parse it.
Here are a few examples of value anomalies
to help you identify them:

• Missing or Null Values:

– A critical column like "Product
ID" or "Customer Name" con-
taining empty or null values
where such information is re-
quired.

– A numeric field like "Price" or
"Quantity" left blank in a sales
record.

• Illogical Negative Values:

– A "Price" column with negative
values, which is not possible for
most products.

– A "Salary" field showing a neg-
ative amount for an employee.

• Extreme Outlier Values:

– A house listed with a price of
$1 or $1 billion in a neighbor-
hood where the typical range is
$300,000 to $500,000.



– A recorded temperature of 150°C
in a location where temperatures
do not exceed 50°C.

L4-w CoT (Normalization)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify normalization
anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to normalization anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Below are examples of normal-
ization anomalies:

• Partial Dependencies (2NF Viola-
tion):
In an "Orders" table with OrderID
and ProductID as a compos-
ite key, some rows may include
CustomerName depending only on
CustomerID, violating 2NF.

• Transitive Dependencies (3NF
Violation):
In an "Employees" table,
OfficeLocation depends on
Department, which depends on
EmployeeID, causing a transitive
dependency.

• Denormalization:
A column like TotalSalary stores
the sum of BaseSalary and Bonus di-
rectly, potentially leading to inconsis-
tencies.

• Combined Attributes:
A single field storing values like "West
Bengal, India, 721306" instead of
separating into City, Country, and Zip.

• Repeating Groups (1NF Violation):
A "Skills" column containing

"MongoDB, C++, C" instead of being
split into individual entries.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column where a normaliza-
tion anomaly is present. Just generate the
list format output so I can easily parse it.

L4-w/o CoT (Normalization)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
normalization anomalies and return them
in the format [(index, column_name),
(index, column_name)], where index
corresponds to the index in the list and
column_name is the name of the column
you think contains a normalization anomaly.
Just generate the list format output so I can
easily parse it.
Here are a few examples of normalization
anomalies to help you identify them:

• Partial Dependencies (2NF Viola-
tion):
In an "Orders" table with OrderID
and ProductID as a compos-
ite key, some rows may include
CustomerName depending only on
CustomerID, violating 2NF.

• Transitive Dependencies (3NF
Violation):
In an "Employees" table,
OfficeLocation depends on
Department, which depends on
EmployeeID, causing a transitive
dependency.

• Denormalization:
A column like TotalSalary stores
the sum of BaseSalary and Bonus di-
rectly, potentially leading to inconsis-
tencies.

• Combined Attributes:
A single field storing values like "West



Bengal, India, 721306" instead of
separating into City, Country, and Zip.

• Repeating Groups (1NF Violation):
A "Skills" column containing
"MongoDB, C++, C" instead of being
split into individual entries.

L4-w CoT (Factual)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify factual anoma-
lies. Follow a structured step-by-step Chain-
of-Thought (CoT) approach before return-
ing the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to factual anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Examples include:

• Contradictions:

– An "assistant" with a higher
salary than a "senior manager".

– A "student" listed with a profes-
sional title like "Professor".

• Unrealistic Values:

– A product price of $1 for a high-
end smartphone or $10,000 for a
notebook.

– A building height of 5000 meters
for a residential structure.

• Geographical Mismatches:

– A city listed as "New York" with
a postal code for Los Angeles.

– A 50°C temperature recorded in
the Arctic.

• Ambiguities:

– A currency field with "Dollar"
but no specification (USD or
CAD).

– A date like "5/7/22" that could
mean May 7 or July 5.

• Record-Breaking Claims:

– A 100-meter race time of 8 sec-
onds.

– A business reporting 200% profit
margins.

• Unlikely Proportions:

– 95% expenses relative to revenue
where 70% is the norm.

– A household using 100,000 kWh
in one month.

• Other Factual Anomalies:

– Any data that contradicts realistic
expectations based on context or
domain.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index refers to the
list index and column_name is the name of
the column you believe contains a factual
anomaly. Just generate the list format
output so I can easily parse it.

L4-w/o CoT (Factual)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
factual anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name
is the name of the column you think con-
tains a factual anomaly. Just generate the
list format output so I can easily parse it.
Here are a few examples of factual anoma-
lies to help you identify them:

• Contradictions:

– An "assistant" with a higher
salary than a "senior manager".

– A "student" listed with a profes-
sional title like "Professor".

• Unrealistic Values:



– A product price of $1 for a high-
end smartphone or $10,000 for a
notebook.

– A building height of 5000 meters
for a residential structure.

• Geographical Mismatches:

– A city listed as "New York" with
a postal code for Los Angeles.

– A 50°C temperature recorded in
the Arctic.

• Ambiguities:

– A currency field with "Dollar"
but no specification (USD or
CAD).

– A date like "5/7/22" that could
mean May 7 or July 5.

• Record-Breaking Claims:

– A 100-meter race time of 8 sec-
onds.

– A business reporting 200% profit
margins.

• Unlikely Proportions:

– 95% expenses relative to revenue
where 70% is the norm.

– A household using 100,000 kWh
in one month.

• Other Factual Anomalies:

– Any data that contradicts realistic
expectations based on context or
domain.

L4-w CoT (Temporal)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify temporal
anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to temporal anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record, examine the following
types of temporal anomalies:

• Conflicting Schedules:

– A meeting that starts before the
previous one has ended.

– A task scheduled to begin while
its prerequisite is still ongoing.

• Illogical Durations:

– A marathon listed as lasting 1 sec-
ond.

– A 24-hour flight for a 2-hour
route.

• Chronological Inconsistencies:

– A departure_time earlier than
the arrival_time.

– An event_end_time before the
event_start_time.

• Unrealistic Temporal Outliers:

– An international delivery marked
as complete 30 seconds after or-
dering.

– A task completed in negative time
(e.g., -2 minutes).

• Timezone Discrepancies:

– Misaligned start and end times
due to missing or incorrect time
zones.

– An event listed at 9:00 AM in
one timezone but 10:00 AM in
another.

• Invalid Temporal Sequences:

– A work shift ending before it be-
gins.

– A follow-up call scheduled before
the initial consultation.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds



to the list index and column_name is the
name of the column with a temporal
anomaly. Just generate the list format
output so I can easily parse it.

L4-w/o CoT (Temporal)

Here is the JSON data: {json_string}. Ana-
lyze the data and identify the cells with tem-
poral anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name
is the name of the column with the tempo-
ral anomaly. Just generate the list format
output so I can easily parse it.
Here are a few examples of temporal anoma-
lies to help you identify them:

• Conflicting Schedules:

– Meetings that overlap or start be-
fore the previous one ends.

– Tasks starting while prerequisite
tasks are still in progress.

• Illogical Durations:

– A 1-second marathon.
– A 24-hour flight on a 2-hour

route.

• Chronological Inconsistencies:

– departure_time earlier than
arrival_time.

– event_end_time before
event_start_time.

• Unrealistic Temporal Outliers:

– A delivery completed within 30
seconds of an international order.

– Tasks marked complete in nega-
tive time.

• Timezone Discrepancies:

– Event times misaligned across
timezones.

– A webinar incorrectly converted
between zones (e.g., 9:00 AM
shown as 10:00 AM).

• Invalid Temporal Sequences:

– A shift that ends before it starts.
– A follow-up event occurring be-

fore the initial one.

L4-w CoT (Calculation)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify calculation
anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to calculation anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for the
following types of calculation anomalies:

• Incorrect Totals:
A "grand total" field that does not
match the sum of individual transac-
tion amounts.

• Incorrect Formula:
Use of inaccurate or logically invalid
formulas (e.g., calculating body fat per-
centage as waist circumference /
height).

• Missing Dependencies:
A "discounted price" column
referring to missing or undefined
"original price" values.

• Logical Violations:
Calculations yielding implausible re-
sults (e.g., an age of 200 or a negative
quantity in inventory).

• Rounding Errors:
Inconsistent rounding across financial
fields, such as tax being rounded in-
consistently across entries.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,



column_name)], where index corresponds
to the index in the list and column_name is
the name of the column where a calculation
anomaly is found. Just generate the list
format output so I can easily parse it.

L4-w/o CoT (Calculation)

Here is the JSON data: {json_string}.
Analyze the data and identify the cells
with calculation anomalies and return them
in the format [(index, column_name),
(index, column_name)], where index
corresponds to the index in the list and
column_name is the name of the column
you think contains a calculation anomaly.
Just generate the list format output so I can
easily parse it.
Here are a few examples of calculation
anomalies to help you identify them:

• Incorrect Totals:
A "grand total" field that does not
reflect the actual sum of transaction
components.

• Incorrect Formula:
Use of an incorrect expression, such
as body fat percentage = waist
circumference / height.

• Missing Dependencies:
Fields like "discounted price" that
rely on missing data in "original
price".

• Logical Violations:
Results that are outside a logical range
(e.g., negative age or quantity).

• Rounding Errors:
Financial fields rounded inconsistently,
leading to discrepancies in totals.

L4-w CoT (Logical)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify logical anoma-
lies. Follow a structured step-by-step Chain-
of-Thought (CoT) approach before return-
ing the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to logical anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record, check for the following
types of logical inconsistencies:

• Illogical Temporal Relationships:

– registration_date occurs af-
ter termination_date.

– delivery_date occurs before
order_date.

• Biological or Physical Impossibili-
ties:

– An age value of 180 years or
more.

– A speed exceeding 5000 km/h in
standard transport records.

• Inconsistent Financial Data:

– A discount greater than the
total_price.

– A refund_amount exceeding the
original transaction.

• Categorical Misclassifications:

– "CEO" as a job title for a per-
son with salary below minimum
wage.

– "Reptile" listed in a mammal
classification.

• Anachronisms or Technological Im-
possibilities:

– A device manufacture_date
predating its invention (e.g.,
smartphone from 1990).

– A passport_issued_date be-
fore the birth_date.

• Referential Inconsistencies:

– customer_id not found in the
customer registry.

– A state field with a nonexistent
or misspelled geographic entity.



Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index is the record
index and column_name is the column
containing a logical anomaly. Just generate
the list format output so I can easily parse
it.

L4-w/o CoT (Logical)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
logical anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index is the index
in the list and column_name is the column
with the logical anomaly. Just generate the
list format output so I can easily parse it.
Here are a few examples of logical anoma-
lies to help you identify them:

• Illogical Temporal Relationships:

– registration_date occurs af-
ter termination_date.

– delivery_date occurs before
order_date.

• Biological or Physical Impossibili-
ties:

– An age value of 180 years or
more.

– A speed value exceeding 5000
km/h in ground transport.

• Inconsistent Financial Data:

– A discount greater than the
total_price.

– A refund larger than the transac-
tion amount.

• Categorical Misclassifications:

– A "CEO" job title with an implau-
sibly low salary.

– A mammal labeled as a
"Reptile".

• Anachronisms or Technological Im-
possibilities:

– Devices with manufacture dates
before their invention.

– A passport issued before the per-
son’s birth.

• Referential Inconsistencies:

– Invalid customer_ids not found
in master data.

– Misspelled or nonexistent
states/regions in the state
column.

C.5 MuSeVe

MuSeVe

prompt = f"{{json_string}}" will have
some anomalies in its cells.
Task: Structured Anomaly Detection in
Semi-Structured Tables
You are an advanced anomaly detection sys-
tem trained to analyze semi-structured ta-
bles. Your goal is to detect anomalies at the
cell level using a structured step-by-step ap-
proach that ensures high accuracy, logical
consistency, and explainability.

Step 1: Generate Multiple Independent
Reasoning Paths (Self-Consistency
Prompting)

• Perform multiple independent analy-
ses of the table, each using a unique
reasoning approach.

• Ensure that each reasoning path is
completely independent and may use
different logical frameworks.

• Each reasoning path should only flag
specific table cells as anomalies, not
entire rows or columns.

Step 2: Apply Chain-of-Thought (CoT)
for Each Reasoning Path
For each independent reasoning path, use
step-by-step logical reasoning:

1. Identify patterns in the data.

2. Compare against expected norms (his-



torical data, rules, domain-specific ex-
pectations).

3. Detect outliers or logical inconsisten-
cies in individual cells.

4. Analyze cross-field relationships (e.g.,
role vs. status, date vs. event).

5. Conclude whether the flagged cells are
anomalous or valid.

Step 3: Anomaly Detection at the Cell
Level

• Flag only specific table cells that con-
tain anomalies.

• Use a structured output format
(index, column_name) where:

– index corresponds to the index in
the list.

– column_name corresponds to the
specific field with the anomaly.

Step 4: Self-Verification for Each
Anomaly (True/False Check)
Each reasoning path must verify its own
flagged anomalies:

1. Ask yourself: “Is this anomaly truly
incorrect?”

2. Cross-check with:

• Expected value distributions.
• Logical consistency.
• Historical data references.

3. Final Decision:

• True → The flagged cell is a con-
firmed anomaly.

• False → The flagged cell is valid
and should not be marked.

Step 5: Majority Voting

• Collect flagged anomalies from all rea-
soning paths.

• If more than 70% of reasoning paths
agree that a flagged cell is anomalous,
confirm the anomaly.

• These majority-voted anomalies will
be the final anomalies reported.

Step 6: Re-Reading & Final Chain-of-
Thought Verification
Before finalizing results:

1. Re-read the table one last time.

2. Apply a final structured CoT reasoning
process.

3. Ensure no valid cells are incorrectly
flagged.

4. Make any necessary corrections to the
anomaly list.

Final Output: A refined, validated
anomaly list.

Final Output Format
Return only the structured list of con-
firmed anomalies. Use the format:
[(index, column_name), (index,
column_name)], where index refers to the
index in the list and column_name is the
column with the anomaly.

C.6 SeVCoT

SeVCoT

Here is the JSON data: {json_string}
Task:
Analyze the data and identify anomalies.
Follow a structured step-by-step Chain-of-
Thought (CoT) approach before returning
the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to .

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Examples of anomalies include:



• Suspended Role Conflict: A user
marked as "inactive" still holds a
"manager" role, posing a risk if the
account is used maliciously.

• Missing Audit Logs: Failed login at-
tempts with blank fields for "Browser
Version" or "User-Agent".

• Suspicious Activity: A user logs in
from a different country every time,
whereas they normally log in from a
single region or office location.

Step 3: Find the Anomalous Cells
Now, find the anomalous cells where you
believe a anomaly is present. Note down all
such cells.

Step 4: Self Verification (True/False
Check)
Verify the flagged anomalies:

1. Ask yourself: “Is the flagged cell truly
an anomaly?”

2. Cross-check with:

• Expected value distributions
• Logical consistency
• Historical data references

3. Final Decision:

• True – The flagged cell is a con-
firmed anomaly.

• False – The flagged cell is ac-
tually valid and should not be
marked.

4. Retain only True confirmed anomalies
for the final output.

Step 5: Re-reading and Final CoT Check-
ing
Before finalizing, re-read the table one last
time and apply structured CoT reasoning:

• Scan the flagged anomalies again.

• Ensure no valid cells are incorrectly
flagged.

• Make corrections to the list if neces-
sary.

Final Output: A refined, validated anomaly
list.

Step 6: Final Output Generation
Return the final output in the format:
[(index, column_name), (index,
column_name)], where index refers to the
list index and column_name is the column
with a anomaly.
Only output the list in this format for easy
parsing.

C.7 NSCM
C.7.1 Constraint Prompt - NSCM

Constraint Prompt

You are an expert in data validation. You
will be provided with a JSON table where
each column includes a subset of its unique
values, some of which may be anomalies.
You will also be given some examples of
the same table so that you can understand
any inter-column dependencies. Your task
is to analyze these unique values in combi-
nation with the column names and generate
generic, domain-informed constraints to ex-
clude anomalous values.
Critically important: You must not create
set-based constraints for numeric columns.
For example, do not write constraints like
if Year not in [1980, 1990, 2020]
— such constraints are strictly forbidden for
numeric data. Instead, derive range-based
or pattern-based rules based on plausible
domain logic.
For instance, if the values for Year are
[2001, 2002, 1980, 19890, 1900, 1500,
2026], then values like 1500, 2026, and
19890 are likely anomalies. A correct con-
straint would be:

if not (1900 <= Year <=
2025)

not a list-based check on specific values.
You must assume the provided unique val-
ues are examples, not the exhaustive set. Do
not assume the list of values is complete or



definitive.
Constraints must follow these principles:

• Be generalizable and not tied to spe-
cific data points.

• Avoid value in [..] checks unless
absolutely necessary.

• For non-numeric columns, set-based
constraints may be used sparingly, and
only after filtering out null, None, or
empty string values.

• Always prioritize data type checks, log-
ical bounds, format patterns, or value
consistency rules over literal matches.

• Never include contradictory or logi-
cally inconsistent rules.

• Think carefully and analytically —
your goal is to identify what should
be valid, not just what has been seen.

These are examples of constraints you
should consider under each constraint
type:
1. Domain Constraints

• Uniqueness: transaction_id must
be unique.

• Code and Identifier Standards:
country_code must match ISO-3166-
1 alpha-2 format.

• Range Constraints: age must be be-
tween 0 and 120.

• Length and Format Constraints:
email must match standard email
format.

• Valid Categorical Values:
athletic_event must be from
{100m, 200m, 400m}.

2. Logical Constraints

• Cross-Column Logic: start_date ≤
end_date.

• Mathematical Relationships:
total_price = unit_price *
quantity.

• Value Interdependencies: 100m_time
< 200m_time for same athlete.

• Valid Ranges by Context:
score_percent must be between
0–100.

3. Temporal Constraints

• Realistic Time Values:
registration_date must not
be in the future.

• Sequence Validations: login_time <
logout_time.

• Unrealistic Time Gaps: Manual entries
should not occur in the same millisec-
ond.

4. External Knowledge Constraints

• Real-World Limits:
world_record_100m must not
be < 9.5 seconds.

• Contextual Validations: population
should not be 0 for an official country.

5. Security Constraints

• Sensitive Data Protection:
credit_card_number must be
encrypted or masked.

• Injection Checks: username,
comment fields must be free of
SQL/script tags.

6. Inter-Row Constraints

• Temporal Consistency Across Rows:
subscription start_date must fol-
low previous end_date.

• Grouped Aggregates: balance
= previous + deposits
withdrawals.

7. Data Consistency Constraints

• Detect anomalies in formats.
Example: Year = [1980,
1999, 2000, 2001,
Nineteen-hundred-and-twenty-two,
2023]
Expected pattern: YYYY, Anomaly:
Nineteen-hundred-and-twenty-two



All constraints should be written as:

x = y + z, x < y, x != None,
unique(x), regex, etc.
Avoid data type constraints.

Step 2 – Identify Factual Constraints for
Validation
Identify all columns with factual info and
validate using external knowledge. For
each:

• column_requiring_validation

• context_columns

• external_knowledge_columns

• external_knowledge_constraint

• required_external_knowledge

Final JSON Output Structure:
{
"domain_constraints": ["constraint_1", ...],
"logical_constraints": ["constraint_1", ...],
"temporal_constraints": ["constraint_1", ...],
"calculation_based_constraints": ["constraint_1", ...],
"security_constraints": ["constraint_1", ...],
"inter_row_constraints": ["constraint_1", ...],
"other_constraints": ["constraint_1", ...],
"external_knowledge_validation": [
{
"context_columns": ["context_column_1",..],
"external_knowledge_columns": ["column_name_1.."],

"column_requiring_validation": "column name from original data",
"external_knowledge_constraint": "logical or mathematical rule",

"required_external_knowledge": "name of external fact"
}

]
}

C.7.2 Statement Generation Prompt
Statement Generation Prompt

I have a list of strings that describe valida-
tion rules for a JSON object. I want you
to convert each rule into a Python if state-
ment that validates a corresponding key in
a dictionary called data. The output should
be a Python list of if statements in string
format, such as:

["if not
isinstance(data.get(’Rating’),
float):", "if not
re.match(...):", ...]

Here are the rules (each line is one rule):

["constraints"]

Furthermore, you will also be given the
JSON object representing the table schema

and the unique values each column has,
some of which might be anomalies. From
the combination of the column name and
the common values, you need to figure out
the anomalous values and write the if state-
ments. You need to use the rules to validate
the data in the JSON object. The output
should be a dictionary containing all viola-
tions found. The dictionary should have the
following structure:
Notes:

• Use re.match() for regex-based vali-
dations.

• For dates, assume that import
datetime is already included.

• Treat integer as int in Python.

• Uniqueness checks should be men-
tioned as comments (or optionally in-
clude sample logic to track uniqueness
across multiple records).

• The output should be a Python list of
stringified if statements.

• You may assume import re is already
included.

• For comparisons and calculations in-
volving numbers, if the value is a string
type, parse the numbers from the string
for comparison.

• Constraints should not be compli-
cated. They should not be followed by
try-except blocks or error raising.

The if statements should be simple and
straightforward, like:

• "if not re.match(...):"

• "if data[’column_name’] < 0:"

• "if data[’column_name’] > 100:"

• "if data[’column_name’] !=
None:"

• "if data[’column_name_1’]
!= data[’column_name_2’] +
data[’column_name_3’]:"



Please return only the list of if statements
as described.
Output schema:
{

"if_statements": [
"if not isinstance(data.get('column_name'), data_type):",
"if not re.match(...):",
... more if statements if applicable ...

]
}

D Prompt-Level Evaluation and Overlap
Analysis

This section presents extended experimental results
and analyses that complement the findings in the
main paper. These analyses aim to deepen our
understanding of model choice, and anomaly cat-
egory characteristics interact in complex anomaly
category tasks. Specifically, we include:

1. Category-wise Overlap Analysis: We com-
pute the percentage overlap between anomaly
categories within each dataset (FeTaQA, Spi-
der+BEA, and WikiTQ), showing how fre-
quently instances belong to multiple cate-
gories. This reveals inter-category dependen-
cies that highlight the compositional nature of
anomalies and motivates the design of prompt-
level evaluation.

2. Prompt-Level Model Performance: We
report precision and recall scores for mul-
tiple large language models (ChatGPT-4o,
Gemini-1.5-Pro, LLaMA-3.1-70B-Instruct,
and Deepseek-V3) across a range of prompt-
ing strategies. These include four baseline
prompt levels (L1–L4), each reflecting in-
creasing depth of reasoning, evaluated both
with and without Chain-of-Thought (CoT)
reasoning. We additionally evaluate two
advanced prompting variants: MUSEVE, a
multi-reasoning formulation, and SEVCOT,
which incorporates self-verification mecha-
nisms along with CoT. The results show that
model performance varies not only across
datasets and categories but also based on
prompt formulation, emphasizing the critical
role of prompt engineering in anomaly detec-
tion tasks.

These extended analyses provide a deeper view
of model behavior and highlight the importance
of structured prompting in anomaly detection. All
prompts are included in Section C for reproducibil-
ity.

D.1 Category Overlap Analysis.

In Table 5, We observe high inter-category over-
lap among factual, logical, consistency, and
value anomalies—especially in FeTaQA and Spi-
der+BEA—indicating that these anomalies often
co-occur and may be semantically entangled. For
instance, in Spider+BEA, over 87% of consis-
tency instances also align with logical and value
anomalies, while in FeTaQA, logical anomalies
have nearly 100% overlap with factual ones. In
contrast, normalization and calculation anoma-
lies show more isolation, particularly in WikiTQ,
where overlap with other types remains below 20%.
These trends highlight that certain anomaly types
are inherently multi-faceted, requiring models to
disentangle overlapping error signals to achieve
accurate detection.

D.2 Trend Analysis (LLaMA-3.1-70B-Instruct
vs. Deepseek-V3).

In Table 6, across all datasets, Deepseek-V3 con-
sistently outperforms LLaMA-3.1-70B-Instruct in
both precision and recall, especially in lower
prompt levels and without CoT. CoT reasoning
provides marginal recall improvements for LLaMA
but yields clearer gains for Deepseek, particularly
on FeTaQA and WikiTQ. Among prompt strategies,
performance peaks around L3–L4 with CoT, while
SEVCOT shows stronger overall recall compared
to MUSEVE. These trends suggest Deepseek is
better at leveraging prompt complexity and CoT,
whereas LLaMA benefits less from reasoning scaf-
folds.

D.3 Prompt-Level Trend Analysis

At L-4 in Table 7, both ChatGPT-4o and Gemini-
1.5-Pro show consistent improvements in recall
when Chain-of-Thought (CoT) reasoning is ap-
plied, particularly for value, temporal, and logi-
cal anomalies. CoT also boosts precision in sev-
eral cases, especially for normalization and calcu-
lation in FeTaQA and WikiTQ. However, factual
and security anomalies remain difficult across both
models, with only marginal gains even under CoT.
Gemini generally demonstrates stronger recall in
complex reasoning categories, while ChatGPT-4o
slightly edges ahead in security and consistency
precision. These results suggest that CoT helps
deepen model reasoning, but its effectiveness varies
significantly by anomaly type.

Extending this observation to earlier prompt lev-



FeTaQA
Category(%) Calculation Consistency Factual Logical Normalization Security Temporal Value
Calculation 100.0 28.9 29.7 29.7 25.7 19.4 11.1 29.6
Consistency 28.9 100.0 98.8 98.8 8.5 56.6 54.4 98.6
Factual 29.7 98.8 100.0 100.0 8.7 56.4 54.7 99.7
Logical 29.7 98.8 100.0 100.0 8.7 56.4 54.7 99.7
Normalization 25.7 8.5 8.7 8.7 100.0 5.7 0.0 8.7
Security 19.4 56.6 56.4 56.4 5.7 100.0 45.2 56.2
Temporal 11.1 54.4 54.7 54.7 0.0 45.2 100.0 54.5
Value 29.6 98.6 99.7 99.7 8.7 56.2 54.5 100.0

Spi+BEA
Category(%) Calculation Consistency Factual Logical Normalization Security Temporal Value
Calculation 100.0 80.6 67.8 71.0 38.2 69.8 31.6 76.9
Consistency 80.6 100.0 76.2 87.3 39.7 88.9 38.1 95.4
Factual 67.8 76.2 100.0 75.0 27.1 68.3 39.6 75.4
Logical 71.0 87.3 75.0 100.0 34.4 79.4 30.6 86.2
Normalization 38.2 39.7 27.1 34.4 100.0 43.1 50.0 40.0
Security 69.8 88.9 68.3 79.4 43.1 100.0 39.0 87.7
Temporal 31.6 38.1 39.6 30.6 50.0 39.0 100.0 38.5
Value 76.9 95.4 75.4 86.2 40.0 87.7 38.5 100.0

WikiTQ
Category(%) Calculation Consistency Factual Logical Normalization Security Temporal Value
Calculation 100.0 15.9 15.8 15.8 89.5 15.2 0.0 7.7
Consistency 15.9 100.0 95.7 95.7 17.5 59.8 42.8 47.0
Factual 15.8 95.7 100.0 98.8 17.6 58.5 40.6 48.5
Logical 15.8 95.7 98.8 100.0 17.6 58.5 41.5 48.5
Normalization 89.5 17.5 17.6 17.6 100.0 15.8 1.1 8.6
Security 15.2 59.8 58.5 58.5 15.8 100.0 31.5 28.8
Temporal 0.0 42.8 40.6 41.5 1.1 31.5 100.0 20.1
Value 7.7 47.0 48.5 48.5 8.6 28.8 20.1 100.0

Table 5: Category-wise percentage overlap across the FeTaQA, Spider+BEA, and WikiTQ datasets. Each cell
reports the proportion of instances in a given source category (row) that also appear in a target category (column),
revealing the extent of semantic and structural co-occurrence among anomaly types. This supplementary analysis
provides insights into category interdependence relevant to the anomaly detection methodology discussed in the
main text.

FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Prompt P R P R P R P R P R P R

LLaMA-3.1-70B-Instruct Deepseek-V3
w/o CoT

L1 26.2 41.5 23.9 28.5 40.8 22.9 42.0 56.6 49.7 43.6 47.0 50.9
L2 26.0 40.4 23.2 28.3 42.8 21.8 44.2 55.5 50.0 42.6 49.9 48.8
L3 28.4 39.8 24.2 28.6 45.1 15.5 47.5 51.3 50.1 40.6 50.6 48.2
L4 27.0 44.0 23.3 27.7 41.4 22.1 45.9 53.5 49.2 42.3 50.6 47.8

with CoT
L1 24.8 42.5 23.6 28.7 34.2 24.5 41.2 56.5 50.2 42.3 49.2 52.1
L2 24.6 41.9 24.4 29.9 36.9 27.2 43.2 54.0 51.8 42.3 53.2 48.4
L3 27.9 41.5 24.4 29.4 37.5 24.4 45.0 50.5 51.1 41.4 56.5 45.2
L4 27.2 44.1 24.1 30.4 36.4 24.5 47.5 53.6 52.5 42.0 53.4 46.0

MUSEVE 23.7 38.9 22.0 26.8 35.6 21.4 42.3 52.4 47.9 40.6 49.0 44.5
SEVCOT 24.6 37.9 23.3 27.5 43.9 27.9 41.0 51.1 50.6 40.6 52.6 48.0

Table 6: This table highlights average Precision (P) and Recall (R) across the FeTaQA, Spider+BEA, and WikiTQ
datasets for LLaMA-3.1-70B-Instruct and Deepseek-V3 under various prompting strategies. Prompt levels Li
correspond to increasing levels of reasoning complexity, evaluated both with (-wcot) and without (-w/ocot) Chain-
of-Thought (CoT) reasoning. MUSEVE and SEVCOT denote multi-reasoning and self-verification prompting
variants, respectively. This table summarizes model performance trends across datasets and reasoning strategies in
the context of anomaly detection.



FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

ChatGPT-4o Gemini-1.5-Pro
L-4-W/O COT

Calculation 41.5 50.6 54.9 34.8 69.2 71.3 40.2 50.2 66.0 40.0 90.0 90.0
Factual 33.6 41.9 42.8 33.0 38.5 34.9 27.8 41.5 39.5 39.0 37.0 34.0
Normalization 57.5 68.0 48.7 30.2 54.3 67.2 58.5 74.5 41.0 43.8 65.0 75.0
Logical 27.7 54.3 47.4 45.7 34.0 42.4 26.3 55.8 42.9 46.5 22.0 36.0
Temporal 70.1 67.7 24.3 31.8 60.1 51.4 71.4 67.4 28.9 42.4 64.0 57.0
Security 34.2 30.6 38.1 38.9 27.9 30.0 33.9 32.7 27.0 50.4 21.0 31.0
Consistency 39.0 41.0 52.2 40.2 45.0 40.5 31.7 40.4 49.8 39.1 32.0 40.0
Value 41.9 86.9 65.0 72.3 55.3 69.3 35.4 79.6 56.9 68.8 62.0 65.0

L-4-W COT
Calculation 40.0 50.9 57.6 35.6 75.0 84.0 37.7 52.1 67.8 47.2 85.0 90.0
Factual 31.9 41.4 43.5 35.8 41.0 41.0 26.7 42.1 35.7 41.1 35.0 36.0
Normalization 65.3 73.9 46.2 32.6 55.0 66.0 42.5 76.5 38.2 45.5 40.0 70.0
Logical 28.5 59.0 44.0 49.1 41.0 44.0 24.2 53.4 44.3 37.3 26.0 36.0
Temporal 66.4 65.8 25.0 33.7 65.0 56.0 70.1 70.4 25.9 40.8 48.0 56.0
Security 40.2 30.6 39.6 42.7 38.0 31.0 33.3 32.9 27.6 53.3 20.0 35.0
Consistency 39.7 43.6 52.9 40.8 46.2 46.6 27.3 40.3 38.9 37.2 29.0 43.0
Value 40.9 87.6 62.5 74.5 57.0 73.0 35.1 80.1 53.0 70.9 49.0 68.0

Table 7: This table summarizes Average Precision (P) and Recall (R) across eight anomaly categories in the FeTaQA,
Spider+BEA, and WikiTQ datasets, evaluated using ChatGPT-4o and Gemini-1.5-Pro under various prompting
strategies. The MUSEVE and SEVCOT configurations represent multi-reasoning and self-verification prompting
variants.

els, Table 8 shows that prompting strategies at L2
and L3 outperform L1 in both precision and re-
call across datasets. These gains are more pro-
nounced when paired with CoT, confirming that
step-by-step prompting scaffolds model reasoning
effectively. Categories such as value, calculation,
and normalization benefit the most, especially for
Gemini-1.5-Pro, which consistently shows stronger
performance under enriched prompts. Conversely,
anomaly types involving implicit semantics—such
as factual and security—see little improvement
even with deeper prompt formulations. This sug-
gests that while CoT strengthens structural reason-
ing, it alone is insufficient for addressing context-
heavy or knowledge-dependent errors.

The same trend continues in Table 9, where
Deepseek-V3 clearly outperforms LLaMA-3.1-
70B-Instruct across prompt levels and datasets.
Deepseek achieves particularly strong recall in
calculation and value anomalies—reaching up to
90.0% recall at L-3 with CoT—demonstrating
its superior scalability with prompt complexity.
LLaMA, by contrast, exhibits weaker improve-
ments from deeper prompts and CoT scaffolding,
often plateauing in recall regardless of prompt de-
sign. Notably, both models still struggle with fac-
tual and security errors, revealing persistent chal-
lenges in capturing external knowledge and com-
plex policy violations.

This pattern holds at L-4 as well (Table 10),
where Deepseek continues to outperform LLaMA
in most categories, particularly under the SEVCOT
and MUSEVE strategies. CoT leads to moderate
recall improvements for logical and temporal cat-
egories in both models, but Deepseek again ben-
efits more robustly. Even so, low recall on fac-
tual and consistency anomalies persists, indicating
that current models—even with rich prompts and
structured verification—struggle with semantically
subtle or context-heavy reasoning tasks.

In conclusion, across all prompt levels and
strategies, we find that CoT reasoning consistently
enhances model performance in structurally clear
anomaly types (e.g., value, calculation, normaliza-
tion), particularly when paired with deeper prompt
formulations. Deepseek-V3 demonstrates stronger
generalization and better use of multi-step reason-
ing compared to LLaMA and even state-of-the-art
APIs like ChatGPT-4o and Gemini-1.5-Pro in many
settings. However, all models exhibit persistent
challenges in handling fact-based or policy-driven
anomalies, suggesting the need for external knowl-
edge integration.

D.4 Merged Anomaly Tables for
Comprehensive Evaluation

For this experiment (results in Table 12), we con-
struct merged tables Tmerged that combine multiple



anomaly types within a single table (results shown
in Table 12). Let Ti denote the base table with ID i,
and let T (a)

i represent the perturbed version of Ti

containing anomalies of type a ∈ A, where

A = {Value,Factual,Logical,Temporal,

Calculation,Security,Normalization,Consistency}

. We define the merged table as:

T (i)
merged =

⋃
a∈Ai

T
(a)
i \Ri

where Ai ⊆ A denotes the anomaly types applica-
ble to Ti, and Ri is the set of redundant rows and
duplicated anomalies removed during merging.

D.5 LCM-Style Variation Sampling for
Controlled Perturbations (Variation_1)

To evaluate model performance under controlled
perturbation budgets, we construct variation sets
from the merged anomaly tables. Let T GT

i denote
the ground truth version of table i, and let T (a)

i be
the perturbed version of i containing anomalies of
type a ∈ Ai.

For each i, let P(a)
i = {p(a)1 , . . . , p

(a)
na } denote

the set of perturbed cells in T (a)
i , identified via

anomaly markers. We define a total perturbation
budget Di for table i, chosen via:

Di = max(1,max
a∈Ai

|P(a)
i |)

We then perform two-step sampling: 1. Sample
a type a ∈ Ai uniformly at random. 2. Sample a
perturbed cell p(a)j ∈ P(a)

i uniformly.
This process is repeated (with replacement) un-

til Di unique (a, j) pairs are selected, forming a
sampled subset Si ⊆

⋃
a P

(a)
i .

For each T (a)
i , we construct a variation T̃ (a)

i by:

T̃ (a)
i (r, c) =

{
T (a)
i (r, c), if (r, c) ∈ Si ∩ P(a)

i

T GT
i (r, c), otherwise

Thus, only a subset of anomaly cells is retained,
while the remaining cells are reverted to ground
truth values using content-based row matching
(when possible). A final merged variation table
T̃ merged
i is then produced by deduplicating rows

across all T̃ (a)
i .

This process ensures consistent row structure,
controlled perturbation density, and realistic evalua-
tion conditions for fine-grained anomaly detection.

D.6 LCM-Style Variation Sampling with Row
and Column Constraints (Variation_2)

We design an enhanced variation sampling strategy
that augments LCM-style sampling with structural
constraints and collects per-file summaries. Given
a ground-truth table T GT

i and a set of perturbed
tables {T (a)

i }a∈Ai for anomaly types a, we define
P(a)
i as the set of perturbed cells in category a.
Let Di =

∑
a∈Ai

|P(a)
i | be the total number of

perturbed cells across all categories for table i. We
sample a budgeted subset Si ⊆

⋃
a P

(a)
i of size

|Si| ≤ Di using the following constraint-aware
LCM-style sampling process:

1. Sample candidate pairs (a, pj) uniformly
without replacement until |Si| = Di.

2. Filter candidates to enforce:

• Row uniqueness: Each perturbed row
index appears at most once in Si.

• Column budget: Each column index ap-
pears in at most K selected perturbed
cells, where K is a user-defined cap (e.g.,
K = 4).

This yields a filtered sampling map F (a)
i ⊆ P(a)

i

for each category a, such that:⋃
a∈Ai

F (a)
i ⊆ Si ⊆

⋃
a∈Ai

P(a)
i

For each a, we construct a variation table T̃ (a)
i

as:

T̃ (a)
i (r, c) =

{
T (a)
i (r, c), if (r, c) ∈ F (a)

i

T GT
i (r, c), otherwise

A final merged deduplicated table T̃ merged
i is cre-

ated from {T̃ (a)
i } with an accompanying label file

that tracks which categories contributed anomalies
to each row.

We additionally construct a summary dictionary
per table i recording:

• The set of categories with perturbations,

• The number of total and kept cells per cate-
gory,

• The exact cell IDs selected per category.

This is stored in a centralized
variation_summary.json to support detailed
auditability and analysis.



D.7 Performance-Aware Stratified Sampling
for Variation Construction (Variation_3)

We propose a performance-guided stratified sam-
pling strategy to prioritize the inclusion of anoma-
lies that are harder for models to detect. Let T GT

i

denote the ground truth table i, and T (a)
i its per-

turbed counterpart with anomaly type a ∈ Ai. Let
P(a)
i denote the set of perturbed cells in T (a)

i .
Each anomaly type a is assigned a performance

score π(a) ∈ R≥0 derived from prior model perfor-
mance (e.g., F1-score). We partition all categories
into three disjoint groups based on these scores:

Ai = AUNDER
i ∪ AMID

i ∪ AOVER
i

where group assignment is based on percentile
thresholds over {π(a)}a∈Ai .

Let wg =
∑

a∈Ag
i
π(a) · |P(a)

i | for group g ∈
{UNDER,MID,OVER}. The probability of sam-
pling from group g is:

pg =
wg

wUNDER + wMID + wOVER

We define a sampling budget Di =

maxa∈Ai |P
(a)
i | and draw Di perturbed cells

using the following process:

1. Draw a group g ∈ {UNDER,MID,OVER}
according to {pg}.

2. Sample a cell (a, c) ∈ P(a)
i for some a ∈ Ag

i

uniformly at random.

3. Repeat until Di unique cells are selected.

Let Si ⊆
⋃

a P
(a)
i denote the selected perturbed

cells. For each a, we define the category-specific
variation as:

T̃ (a)
i (r, c) =

{
T (a)
i (r, c), if (r, c) ∈ Si ∩ P(a)

i

T GT
i (r, c), otherwise

A final merged deduplicated table T̃ merged
i is con-

structed by aggregating {T̃ (a)
i }, and an accompa-

nying summary Σi records:

• The group assignment for each category,

• The number of perturbed and retained cells
per category,

• The exact cells retained in Si.

This approach increases the sampling likelihood
of underperforming anomaly types, allowing tar-
geted evaluation on model weaknesses while main-
taining balanced coverage.

D.8 Schema-Aware Metadata Generation for
NSCM

To prepare input for our NSCM method, we extract
high-level metadata from each table using only its
schema, first few rows, and inferred data types.
Given a table T represented as a list of n rows
{r1, . . . , rn}, where each row ri is a mapping from
d column names {c1, . . . , cd} to values, we define:

• ST = {c1, . . . , cd} as the column schema,

• Tsample = {r1, . . . , rk} as the first k = 30
rows,

• τ(cj) as the inferred data type(s) of column
cj .

The type τ(cj) is computed by sampling up to
100 non-null entries from column cj and applying
pattern matching rules for the following type set:

D = {integer, float, boolean, string, date,
time, datetime, array, object, null}

Each column may have one or more data types,
i.e., τ(cj) ⊆ D. Let TD denote the metadata gener-
ated for table T , defined as:

TD =

title : t, col :

{col_name : cj ,

type : τ(cj),

desc : dj}


d

j=1


A language model (Gemini 1.5 Flash) is

prompted with Tsample and {τ(cj)}dj=1 to generate:

1. A concise table title t,

2. A 1–2 line natural language description dj for
each column cj .

The resulting TD is stored as structured JSON
and passed as input to our NSCM pipeline for con-
straint generation and validation. This process en-
sures that NSCM operates using only minimal and
schema-level context, without requiring full-table
access.

We conduct three types of experiments (results
in Table 11 using NSCM using this prepared data.
First (exp_1), we sample 20 unique schema val-
ues from each table and derive constraints solely
from the schema, evaluating the results table-wise.
Second (exp_2), for each variation (var_1, var_2,
var_3) described in Sections D.5, D.6, and D.7, we
similarly extract 20 unique schema values, derive
constraints specific to each variation, and evaluate



the results table-wise. Third (exp_3), we provide
the LLM with the table schema along with column
data types, an LLM-generated description of each
column, the table title, and the first five rows of
the table; constraints are then derived as before and
evaluated table-wise.

D.9 Results and Analysis

The experimental results in Table 12 highlight a dis-
tinct performance hierarchy, with Gemini 1.5 Flash
and GPT-4o significantly outperforming Llama-3.1-
70B-Instruct; for instance, on the FeTaQA dataset
with the L1 with CoT prompt, Gemini achieved a
Precision of 44.0 compared to Llama’s 27.7. The
impact of explicit reasoning strategies proved in-
consistent. Enabling Chain-of-Thought (with CoT)
provided only marginal changes, slightly decreas-
ing Gemini’s Precision on the L1 FeTaQA prompt
from 46.4 to 44.0. Furthermore, advanced prompt-
ing methods demonstrated instability, exemplified
by the MuSeVe strategy causing a catastrophic drop
in Gemini’s Recall to just 1.1 on the Spi+BEA
dataset, a sharp decline from the 33.6 achieved
with a simpler L1 prompt.

Experiments FeTaQA Spider+BEA WikiTQ

P R P R P R

Exp_1 50.3 32.2 55.5 29.9 54.6 46.7
Exp_2

variation_1 40.0 28.7 58.1 36.1 46.1 36.3
variation_2 48.0 30.4 49.3 33.4 57.0 37.9
variation_3 38.6 27.7 55.4 28.3 45.7 29.2

Exp_3 53.6 33.1 64.0 36.9 54.5 37.9

Table 11: This table highlights average Precision (P) and
Recall (R) for different experiments and their variations
across the FeTaQA, Spider+BEA, and WikiTQ datasets
as mentioned in Section D.8.

The evaluation across three distinct table varia-
tions as shown in Table 13 reveals that anomaly
distribution, rather than inherent difficulty, is a
critical factor in model performance. Variation
2, which imposes structural constraints by isolating
anomalies to unique rows and columns, induced
a significant performance collapse across all mod-
els. This is most evident on the Spi+BEA dataset,
where Gemini’s Precision plummeted from 34.6
in Variation 1 to just 6.2. Paradoxically, Variation
3, which was designed to be more challenging by
prioritizing the sampling of historically "hard-to-
detect" anomaly types, yielded the strongest results
for most models. For instance, Gemini’s Precision
on FeTaQA increased from 36.6 in Variation 1 to

41.9 in Variation 3. This suggests that the sparsity
and structural isolation of anomalies (Variation 2)
present a greater challenge to current models than
a concentrated set of known difficult anomalies
(Variation 3).

The experiments results shown in Table 11 eval-
uating our NSCM method reveal the significant
impact of LLM-generated semantic context. Pro-
viding the model with a generated table title and
column descriptions (Exp_3) generally improved
performance over using schema-only information
(Exp_1), most notably increasing Precision on the
Spider+BEA dataset from 55.5 to 64.0. However,
this benefit was not universal, as the enriched con-
text unexpectedly led to a drop in Recall on Wik-
iTQ from 46.7 down to 37.9. As expected, applying
the schema-only approach to the more challeng-
ing table variations (Exp_2) confirmed their dif-
ficulty, with performance consistently lower than
the Exp_1 baseline. These results underscore that
while LLM-enriched metadata is a powerful en-
hancement for constraint generation, its effective-
ness can be dataset-dependent.



FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

ChatGPT-4o Gemini-1.5-Pro
L-1-W/O COT

Calculation 25.5 48.3 46.7 36.4 75.9 78.3 18.8 56.2 70.1 62.2 76.0 92.0
Factual 32.7 49.7 42.8 39.8 42.0 39.6 19.1 39.2 36.7 41.3 14.0 39.0
Normalization 59.6 69.3 43.6 22.7 70.1 56.3 48.3 75.8 54.6 24.8 52.0 75.0
Logical 25.6 59.3 44.3 50.1 29.4 41.9 20.1 58.6 39.0 48.4 13.0 47.0
Temporal 49.9 61.2 26.1 35.2 44.2 57.8 49.6 76.8 28.1 44.2 17.0 65.0
Security 38.0 40.1 35.5 49.8 27.0 42.6 24.8 37.7 33.7 50.8 13.0 47.0
Consistency 36.5 34.9 53.1 38.2 49.0 35.8 24.9 34.1 46.7 32.6 26.0 39.0
Value 39.8 82.6 58.2 74.6 62.9 68.4 27.7 77.0 53.6 67.9 37.0 65.0

L-1-W COT
Calculation 27.6 50.9 46.7 35.7 81.0 83.0 21.4 51.3 62.9 61.4 84.0 92.0
Factual 31.8 49.6 42.0 39.2 33.0 42.0 20.9 42.9 35.9 41.3 17.0 39.0
Normalization 55.0 68.6 45.0 22.8 67.0 61.0 60.4 71.9 49.3 27.7 62.0 74.0
Logical 25.1 61.6 41.3 49.9 32.0 49.0 18.9 60.7 39.4 48.9 15.0 50.0
Temporal 46.1 60.1 25.0 35.6 41.0 60.0 52.3 74.1 24.8 42.3 20.0 60.0
Security 34.7 41.6 33.4 46.9 23.0 57.0 27.4 41.2 36.1 53.2 15.0 51.0
Consistency 34.2 34.4 49.9 37.0 49.9 42.8 24.9 34.1 45.5 33.5 25.0 41.0
Value 38.3 82.2 58.1 74.5 59.0 72.0 30.5 75.2 54.6 68.5 43.0 64.0

L-2-W/O COT
Calculation 30.8 51.7 49.7 37.5 74.1 73.3 21.7 52.1 45.1 57.7 84.0 92.0
Factual 33.4 49.1 43.3 38.7 43.1 41.3 20.6 40.7 40.9 42.4 20.0 35.0
Normalization 60.3 59.5 42.6 22.5 71.2 56.0 60.4 79.7 45.9 29.1 65.0 75.0
Logical 26.7 61.0 45.6 49.0 30.6 45.5 20.8 56.1 31.4 48.5 21.0 52.0
Temporal 53.9 61.7 25.4 34.7 44.2 57.8 50.4 73.2 22.9 43.0 28.0 59.0
Security 37.3 38.8 36.1 47.0 26.9 40.2 27.0 37.2 32.3 55.6 18.0 46.0
Consistency 36.6 33.3 50.5 37.3 47.9 35.4 28.9 35.5 44.5 33.0 29.0 37.0
Value 40.0 80.5 58.2 73.6 63.7 66.5 32.8 74.2 48.5 67.4 55.0 63.0

L-2-W COT
Calculation 30.1 48.3 49.7 35.8 84.0 81.0 26.8 51.3 53.2 57.3 90.0 91.0
Factual 31.6 45.1 40.9 38.0 41.0 43.0 22.2 39.5 37.6 40.8 27.0 38.0
Normalization 57.7 66.0 46.1 23.0 73.0 53.0 63.7 79.1 49.0 31.1 66.0 67.0
Logical 27.9 62.8 46.1 48.1 33.0 48.0 21.0 56.1 36.2 49.3 23.0 42.0
Temporal 58.2 71.1 25.2 37.6 39.0 61.0 52.7 74.5 26.9 42.2 28.0 57.0
Security 35.4 39.2 35.7 46.4 22.0 48.0 30.9 42.2 33.0 56.9 22.0 47.0
Consistency 39.2 35.9 53.4 36.9 49.6 39.3 29.6 33.8 47.3 32.7 31.0 34.0
Value 39.6 83.7 59.2 74.6 58.0 72.0 35.3 76.2 50.5 68.2 51.0 62.0

L-3-W/O COT
Calculation 38.1 46.1 47.2 30.6 57.1 66.7 35.2 52.1 56.9 55.3 88.0 88.0
Factual 33.1 40.4 41.6 34.2 40.4 37.1 25.0 41.3 32.5 39.4 28.0 36.0
Normalization 67.9 74.5 49.6 22.6 70.1 66.4 64.0 77.8 41.4 40.9 67.0 74.0
Logical 28.9 57.1 40.3 45.5 28.1 44.2 22.9 52.7 28.9 46.0 20.0 46.0
Temporal 72.8 71.3 27.0 34.0 64.3 59.9 68.9 75.2 27.9 49.3 56.0 60.0
Security 35.4 30.3 33.9 43.5 23.7 31.7 28.0 28.8 20.4 47.8 14.0 35.0
Consistency 38.8 36.2 52.4 36.0 49.6 39.5 29.3 34.1 42.9 35.8 35.0 40.0
Value 38.7 80.5 59.7 70.0 66.8 65.6 33.0 74.0 48.8 64.4 55.0 62.0

L-3-W COT
Calculation 42.7 51.7 48.7 38.5 77.0 76.0 37.0 53.6 55.7 52.7 90.0 89.0
Factual 33.1 43.0 40.2 34.8 40.0 41.0 24.4 39.4 29.9 39.5 29.0 36.0
Normalization 62.0 66.0 51.8 24.1 55.0 59.0 65.3 72.5 38.4 41.7 60.0 76.0
Logical 28.4 58.3 43.2 48.0 30.0 44.0 21.2 49.8 30.3 42.3 24.0 41.0
Temporal 68.1 68.1 29.4 37.6 61.0 58.0 69.4 73.4 23.1 44.7 50.0 60.0
Security 36.1 32.3 32.9 42.2 28.0 38.0 31.7 30.9 19.7 49.9 14.0 33.0
Consistency 37.6 37.6 52.4 37.0 48.1 40.6 29.2 36.4 39.8 35.6 29.0 36.0
Value 41.2 82.4 60.7 73.2 65.0 68.0 33.1 69.9 41.2 62.3 51.0 58.0

Table 8: This table summarizes the Average Precision (P) and Recall (R) across eight anomaly categories in the
FeTaQA, Spider+BEA, and WikiTQ datasets, evaluated using ChatGPT-4o and Gemini-1.5-Pro under various
prompting strategies. Each prompt level L1 - L3 corresponds to a different depth of reasoning, with -w/ocot and -w
CoT indicating the absence and presence of Chain-of-Thought (CoT) reasoning, respectively.



FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

llama-3.1-70B-Instruct Deepseek-V3
L-1-W/O COT

Calculation 13.9 36.7 33.6 37.6 60.0 37.0 29.2 50.9 57.5 44.7 77.0 79.0
Factual 17.8 32.1 20.8 26.0 29.0 14.0 27.2 39.9 41.7 31.8 28.0 35.0
Normalization 34.5 44.4 28.8 21.6 50.0 28.0 75.3 71.9 49.3 25.0 76.0 61.0
Logical 20.7 49.5 19.1 27.7 30.0 19.0 25.1 57.5 49.2 47.5 25.0 37.0
Temporal 42.1 44.5 11.8 24.3 35.0 26.0 66.6 79.1 24.9 37.1 45.0 54.0
Security 25.9 28.2 17.6 30.3 29.0 20.0 37.1 39.7 43.4 50.7 27.0 43.0
Consistency 23.9 25.9 25.9 22.4 37.0 16.0 37.6 32.3 50.6 28.5 45.0 33.0
Value 30.5 71.0 33.9 38.5 56.0 23.0 38.0 81.3 80.6 83.2 53.0 65.0

L-1-W COT
Calculation 14.0 37.1 33.0 35.4 48.0 41.0 28.5 50.6 56.0 42.3 83.0 79.0
Factual 17.6 32.6 20.8 27.4 29.0 16.0 27.7 40.1 35.8 31.0 27.0 34.0
Normalization 30.6 45.8 28.9 22.9 50.0 25.0 70.8 71.2 51.7 24.3 78.0 60.0
Logical 19.5 47.5 16.6 27.6 27.0 22.0 26.2 59.6 46.4 47.4 30.0 46.0
Temporal 38.4 46.6 11.5 24.2 19.0 21.0 62.8 76.1 30.1 35.7 46.0 57.0
Security 25.1 31.1 19.8 31.6 21.0 23.0 38.3 41.0 47.2 48.3 25.0 43.0
Consistency 22.9 27.4 25.3 22.1 32.0 16.0 37.6 33.0 53.0 27.9 45.0 34.0
Value 30.7 72.2 33.0 38.1 48.0 32.0 37.6 80.1 80.9 81.7 60.0 64.0

L-2-W/O COT
Calculation 15.6 38.2 28.1 32.0 61.0 33.0 31.8 52.8 52.3 39.6 81.0 77.0
Factual 19.7 31.7 20.7 29.5 37.0 17.0 28.1 39.9 42.6 31.5 35.0 33.0
Normalization 36.9 45.1 31.6 23.6 55.0 26.0 84.3 66.7 49.0 24.6 65.0 57.0
Logical 20.2 44.5 17.1 27.5 31.0 20.0 27.9 58.4 44.4 49.6 26.0 37.0
Temporal 37.2 44.0 11.7 23.2 31.0 28.0 66.3 76.8 31.5 34.3 49.0 56.0
Security 25.5 29.1 17.7 31.5 34.0 18.0 38.6 38.2 49.0 51.6 26.0 40.0
Consistency 23.0 23.1 25.8 21.4 37.0 13.0 37.2 31.9 51.9 28.4 49.0 30.0
Value 29.5 67.3 32.9 37.3 56.0 19.0 39.0 79.3 79.6 81.3 68.0 60.0

L-2-W COT
Calculation 13.6 36.0 31.9 36.9 45.0 40.0 31.2 49.4 54.5 39.1 89.0 79.0
Factual 14.3 30.0 22.7 27.6 30.0 19.0 28.3 39.7 40.0 30.1 29.0 31.0
Normalization 33.0 48.4 33.0 24.0 57.0 31.0 79.7 61.4 53.5 23.0 82.0 57.0
Logical 19.0 47.0 16.9 28.8 26.0 23.0 26.5 59.5 48.5 48.5 26.0 37.0
Temporal 43.9 50.7 13.7 27.4 25.0 28.0 66.9 74.5 31.9 38.2 53.0 52.0
Security 20.3 26.7 18.4 33.1 24.0 22.0 37.5 38.6 49.9 51.2 32.0 44.0
Consistency 23.0 27.1 25.5 22.8 33.0 17.0 36.8 30.2 54.9 27.1 48.0 29.0
Value 30.0 69.5 32.9 38.7 55.0 38.0 39.1 78.7 80.9 80.8 67.0 58.0

L-3-W/O COT
Calculation 20.1 37.8 35.5 38.1 62.0 17.0 38.3 54.7 58.2 37.9 76.0 76.0
Factual 19.4 27.8 22.5 26.7 31.0 12.0 35.1 36.9 40.4 28.4 27.0 31.0
Normalization 36.3 45.1 29.8 25.0 55.0 19.0 75.6 58.8 43.1 24.4 74.0 58.0
Logical 20.4 42.5 18.1 26.3 39.0 20.0 31.4 51.9 49.7 45.5 25.0 38.0
Temporal 50.8 44.3 10.8 25.7 49.0 14.0 80.3 75.7 29.7 38.0 65.0 56.0
Security 27.3 27.9 18.1 28.7 33.0 16.0 43.5 31.5 43.5 46.0 26.0 36.0
Consistency 23.3 24.6 25.9 21.3 34.0 14.0 40.8 29.9 54.9 27.7 50.0 31.0
Value 29.9 68.7 32.6 37.0 58.0 12.0 35.2 70.8 81.3 77.0 62.0 60.0

L-3-W COT
Calculation 18.2 39.3 37.5 38.4 71.0 19.0 43.8 54.7 65.2 43.3 90.0 66.0
Factual 16.0 28.3 24.0 27.5 26.0 17.0 33.9 36.6 44.3 30.4 34.0 30.0
Normalization 37.1 53.6 26.1 25.4 53.0 33.0 48.6 56.2 44.3 24.7 79.0 67.0
Logical 17.6 43.1 17.4 27.5 20.0 22.0 28.7 55.5 45.5 46.1 26.0 36.0
Temporal 59.7 50.2 13.6 27.0 39.0 27.0 80.6 71.6 30.0 38.9 66.0 48.0
Security 23.2 23.1 19.7 30.1 18.0 17.0 45.6 27.6 42.4 45.6 34.0 31.0
Consistency 23.2 28.2 24.8 21.9 31.0 18.0 40.8 30.6 56.2 26.4 51.0 30.0
Value 27.9 66.3 32.6 37.4 42.0 42.0 38.1 71.1 81.1 76.1 72.0 54.0

Table 9: This table summarizes Average Precision (P) and Recall (R) across eight anomaly categories in the
FeTaQA, Spider+BEA, and WikiTQ datasets, evaluated using llama-3.1-70B-Instruct and Deepseek-V3 under
various prompting strategies. Each prompt level Li corresponds to a different depth of reasoning, with -w/ocot and
-w CoT indicating the absence and presence of Chain-of-Thought (CoT) reasoning, respectively.



FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

llama-3.1-70B-Instruct Deepseek-V3
L-4-W/O COT

Calculation 17.3 41.2 35.6 37.1 67.0 16.0 46.2 52.4 62.2 39.6 77.0 71.0
Factual 16.7 30.3 18.5 22.8 31.0 20.0 34.6 39.8 39.4 30.6 29.0 32.0
Normalization 37.7 52.3 29.1 28.6 53.0 32.0 50.6 59.5 42.7 27.2 77.0 66.0
Logical 18.2 44.6 16.4 22.4 27.0 18.0 29.1 55.1 47.9 44.5 20.0 35.0
Temporal 47.8 48.9 8.7 20.9 45.0 33.0 79.1 72.0 25.8 35.9 60.0 47.0
Security 24.2 25.5 20.0 28.9 27.0 21.0 47.2 33.6 45.8 48.1 33.0 33.0
Consistency 24.8 37.6 23.3 23.1 31.0 14.0 40.0 33.7 48.4 30.9 47.0 34.0
Value 29.2 71.4 34.7 37.8 50.0 23.0 40.6 81.5 81.4 81.3 62.0 64.0

L-4-W COT
Calculation 19.3 40.5 35.4 38.3 70.0 33.0 45.0 52.1 65.6 40.2 80.0 65.0
Factual 16.1 30.6 21.9 26.0 31.0 20.0 34.0 36.6 36.0 29.3 30.0 32.0
Normalization 36.6 53.6 31.4 33.3 39.0 23.0 68.1 71.2 40.5 28.4 76.0 66.0
Logical 18.1 42.2 17.3 26.3 25.0 22.0 33.8 56.5 55.4 43.1 28.0 38.0
Temporal 45.9 50.0 10.0 25.1 35.0 27.0 75.7 65.8 32.8 35.4 63.0 48.0
Security 27.2 27.9 18.0 29.4 24.0 23.0 43.3 29.4 53.3 46.5 36.0 28.0
Consistency 24.2 35.6 24.6 25.1 28.0 20.0 40.8 33.8 50.1 31.6 49.0 33.0
Value 29.9 72.3 33.8 40.0 39.0 28.0 39.6 83.8 86.0 81.8 65.0 58.0

MUSEVE
Calculation 12.4 33.0 31.1 35.0 47.0 22.0 30.9 48.3 55.7 38.3 70.0 56.0
Factual 16.1 28.5 15.2 28.6 29.0 17.0 29.0 39.3 39.6 30.3 36.0 30.0
Normalization 40.9 47.1 33.1 25.6 51.0 23.0 72.6 53.6 45.8 22.9 73.0 57.0
Logical 18.5 42.5 16.0 25.7 25.0 22.0 27.3 58.1 46.4 47.3 34.0 35.0
Temporal 32.8 43.1 7.1 14.7 24.0 20.0 65.7 72.5 26.0 35.5 39.0 49.0
Security 24.6 30.2 16.3 29.2 25.0 22.0 38.6 40.4 41.8 46.8 38.0 43.0
Consistency 18.9 24.1 23.7 20.1 32.0 12.0 37.1 30.6 49.1 25.7 45.0 30.0
Value 25.2 63.0 33.3 35.5 52.0 33.0 37.3 76.4 78.6 77.7 57.0 56.0

SEVCOT
Calculation 16.2 31.8 35.0 38.3 69.0 31.0 30.6 43.8 55.0 36.5 84.0 68.0
Factual 16.7 27.6 19.2 25.9 38.0 18.0 28.4 38.1 37.4 30.7 35.0 34.0
Normalization 35.3 42.5 30.4 22.4 57.0 47.0 61.2 53.6 53.3 22.9 76.0 66.0
Logical 18.8 43.4 16.3 26.5 32.0 19.0 27.5 57.5 50.5 47.3 26.0 39.0
Temporal 35.1 42.0 11.4 24.3 43.0 29.0 66.7 72.2 27.9 37.6 60.0 53.0
Security 25.1 28.5 17.4 28.2 22.0 21.0 38.5 37.9 50.3 46.9 33.0 34.0
Consistency 20.1 22.9 23.4 19.1 32.0 19.0 35.4 28.5 48.7 24.2 41.0 31.0
Value 29.1 64.9 33.6 35.6 58.0 39.0 39.3 76.9 81.6 78.7 66.0 59.0

Table 10: This table summarizes Average Precision (P) and Recall (R) across eight anomaly categories in the
FeTaQA, Spider+BEA, and WikiTQ datasets, evaluated using llama-3.1-70B-Instruct and Deepseek-V3 under
various prompting strategies. Each prompt level L4 corresponds to a different depth of reasoning, with -w/ocot and
-w CoT indicating the absence and presence of Chain-of-Thought (CoT) reasoning, respectively. The MUSEVE and
SEVCOT configurations represent multi-reasoning and self-verification prompting variants.

FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Prompt P R P R P R P R P R P R P R P R P R

Gemini 1.5 Flash GPT 4o Llama-3.1-70B-Instruct
w/o CoT

L1 46.4 29.7 45.2 33.1 37.9 38.9 43.8 32.8 31.7 17.4 40.5 32.4 26.6 29.4 30.6 26.0 19.7 28.3
L2 44.4 30.3 46.3 32.7 43.0 40.9 43.5 31.8 33.1 17.1 41.2 31.3 26.4 26.0 30.6 27.0 20.3 26.7
L4 44.1 31.5 43.4 34.7 38.8 42.0 39.4 31.5 30.9 18.4 34.3 31.1 22.2 30.8 25.4 33.6 17.1 29.1

with CoT
L1 44.0 30.9 45.5 33.6 38.6 40.2 42.2 31.0 31.7 17.7 39.8 31.5 27.7 27.0 30.2 26.7 20.1 26.6
L2 43.8 31.1 46.4 34.1 40.5 40.2 43.2 31.7 31.9 17.0 40.8 31.7 26.2 27.3 31.0 26.6 21.5 27.0
L4 40.8 31.5 42.9 35.1 38.6 42.9 40.2 28.0 30.8 17.8 36.3 29.8 23.1 28.7 29.0 32.9 18.3 28.3

MUSEVE 45.2 28.3 29.9 1.1 41.9 38.5 42.3 26.3 32.0 14.7 41.4 28.5 22.9 26.4 28.4 26.8 18.2 24.7
SEVCOT 42.9 32.1 42.3 34.2 38.1 40.3 42.9 25.4 29.2 14.8 41.9 27.3 24.5 24.8 30.8 26.1 20.0 25.4

Table 12: This table highlights average Precision (P) and Recall (R) across the FeTaQA, Spider+BEA, and WikiTQ
datasets for Gemini 1.5 Flash, GPT-4o, and LLaMA-3.1-70B-Instruct under various prompting strategies where the
data is merged as described in section D.4.



FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Prompt P R P R P R P R P R P R P R P R P R

Gemini 1.5 Flash GPT 4o LLaMA-3.1-70B-Instruct
Variation_1

MUSEVE 36.6 34.5 34.6 34.1 25.9 36.5 33.5 28.9 22.7 15.3 26.0 24.7 16.1 24.7 16.7 29.5 8.1 19.3
SEVCOT 34.1 36.5 32.9 34.6 22.4 35.9 34.7 28.8 22.2 17.7 27.0 26.2 18.4 25.7 17.5 27.5 8.8 20.0

Variation_2
MUSEVE 38.6 37.8 6.2 35.3 33.0 37.8 38.5 35.2 6.3 16.5 28.0 25.8 17.7 24.5 1.7 21.1 10.6 19.1
SEVCOT 35.6 38.3 4.8 37.2 31.3 40.6 38.6 32.8 6.7 16.6 29.0 25.3 19.6 25.1 1.8 19.9 11.8 20.9

Variation_3
MUSEVE 41.9 35.8 31.8 28.3 39.6 41.3 41.5 31.1 24.1 14.7 38.2 26.8 22.9 25.6 15.8 28.5 20.7 23.9
SEVCOT 38.8 35.2 28.3 29.7 33.9 41.6 42.4 30.0 24.8 15.6 39.0 27.1 22.6 27.1 16.5 22.7 21.4 25.4

Table 13: This table highlights average Precision (P) and Recall (R) across the FeTaQA, Spider+BEA, and WikiTQ
datasets for Gemini 1.5 Flash, GPT-4o, and LLaMA-3.1-70B-Instruct under various prompting strategies where the
data is merged and the performance of the LLMs is evaluated on different table variations described in Sections D.5,
D.6, & D.7.


